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I consider it quite possible that physics cannot be based  

on the field concept, i.e., on continuous structures. 

 In that case, nothing remains of my entire castle in the air,  

gravitation theory included, [and of] the rest of modern physics. 

 

Albert Einstein 

 in a 1954 letter to Michele Besso 

 
continuum:   A continuous extent, succession, or whole, no part of 

which can be distinguished from neighboring parts except by arbitrary 

division. 

 

 

PREFACE 
 

 The lights go down. A violinist stands onstage waiting for the audience to quiet down. 

The audience noise quickly abates and becomes quiet. Quiet? Perhaps only an artist onstage 

actually knows how noisy a completely ‘quiet’ audience really is. He draws a stand of horsehairs 

across a tightly stretched string. Aided by a bit or rosin the friction of the horsehair across the 

string creates a structure that is truly magical. This string, whose weight would be expressed in  
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milligrams, is excited by less energy that it takes to lift a coffee cup. Even then, less than two per   

cent of the energy transmitted by the bow actually sees its way into the structure that is the 

sound. A few physically exotic things happen and the result ‘fills’ the hall.  

On the other hand to feed a similar sound to the hall electronically a quite powerful 

amplification system is required. The energy the violinist expends is a fraction of a watt whereas 

the energy required by the amplification system will be at least a couple of hundred watts. 

Why should this be? It is, or attempts to be, the same sound. The acoustical engineer 

points to the waveform on an oscilloscope and declares that his system creates a waveform so 

similar that it is impossible to distinguish it from the one created by the violin. What he says is 

true but still it takes hundreds of times as much energy to produce a sound electronically than it 

does acoustically and even then it is not a true reproduction. Something is wrong, not with the 

equipment but with the basic concepts we have of sound itself. These incorrect assumptions 

extend as well to vibration. 

 Even with this tremendous expenditure of energy the sound simply does not sound real. If 

these procedures produced a genuine, realistic sound, the energy requirements would be trivial but 

the two are facets of the same problem. To solve one would be to solve the other. 

 The primary method of analyzing the waveform that appears on the oscilloscope (and for 

that matter, for analyzing any periodic function) is to break the function down into simple 

sinusoidal components. This is, of course, Fourier analysis. This method of harmonic analysis is 

very well known and has been used for many things for a very long time. However, even with 

splendid oscilloscopes and powerful computers the result still does not create the same structure 

as that created by the violin. If it did the sounds would be indistinguishable. 

 Fourier analysis is powerful and very useful tool but it, like most mathematical 

procedures, describes linear functions and this paper will prove that music is non-linear. Such 

harmonic analysis behaves exactly as it is defined. This is not an uncommon occurrence. There 

used to be a sign over the desk of Igor Sikorsky that stated, “It can be proven mathematically that 

the bumblebee cannot fly. Fortunately the bumblebee does not know this.” There was proof 

around the turn of the century that ‘proved’ mathematically that heavier than air flight was 

impossible. Many such examples can be found. This does not denigrate mathematics in any way, 

it merely illustrates that mathematics is only one part of the puzzle. 

 In effect this analytic procedure (Fourier analysis) breaks a complex wave up into a series 

of circles as, graphically, sines and cosines are most simply represented as circles. There is an 

even older theory that uses circles that had stood for centuries; the Ptolemaic theory of the 

structure is the Solar System. The reason it lasted so long is that it cannot be challenged 

mathematically. As a mathematical theory it is quite sound (many mathematicians at that time 

felt that it was too sound). What is wrong is that the basic assumption upon which it was 

constructed. 

An even more appropriate example is the calculation of the speed of sound by Newton 

and Lagrange. They both used conflicting and complex methodology but ended up with the same 

basic result, which was wrong. Again, the problem was not the mathematics. It remained for 

Laplace to figure out that the error was the assumption that the elastic motions of the air particles 

take place at a constant temperature (isothermal volume elasticity) or, more simply put, the 

temperature of the air is constant during the passage of the sound wave.  

Laplace figured that since the frequency of sound is so rapid that the temperature would, 

in fact, change as the sound wave progressed, the so-called adiabatic law. Once again the 

problem was not in the mathematics. 
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In the dichotomy of the real and electronically reproduced violin sound we have a powerful 

rigorous mathematical procedure combined with extremely well researched and constructed 

hardware that does not create the same phenomenon that the violin does. It would seem that 

somewhere in the system there is an incorrect assumption - - perhaps many.  

Music and vibration are both discrete functions in every way. They are not, in any way, 

analog in nature. And here we have the beginning of the argument. It is an argument that has 

been going on unchanged at least since the beginning of Greek thought, and probably much 

longer. 

 

CONTINUITY 

 

Most thinking today seems to feel that we can finally explain the great Eliatic paradoxes. 

Consider the one about rabbit and the turtle. The rabbit starts from a point twice the distance 

from the finish line as the turtle. As the turtle covers half the distance the rabbit reaches the 

starting point of the turtle. The turtle covers half the remaining distance or ¼ of original distance. 

The rabbit covers ½ the original distance. The race continues in like fashion. The result is two 

infinite series. 
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It appears that the rabbit can never catch the turtle and this is said to be paradoxical. After 

all, we are now told that the sum of an infinite series is 1, or at least that is the current view. The 

theory of a limit is the bedrock of calculus however; if this were true then there must a 

penultimate number, the last fraction before 1 is reached. The answer actually lies in the way in 

which the problem is stated. The conditions of the statement are fulfilled if, and only if, both the 

rabbit and the turtle stop after they reach their fractional distances. If this happens the rabbit 

would indeed never actually catch the turtle. The asymptote never reaches the axis it approaches. 

If neither stops there exists no point that can be said to be ½ or ¼ or any point whatever.  The 

distances are continuously changing so that no defining point can be stated until they stop. 

Defined as such the rabbit not only catches the turtle but also overtakes it. In either case there is 

no paradox. 

Many think that calculus is mankind’s greatest invention. There are certainly good  

reasons to think so. Unfortunately that distinction does not give it a meaningful connection  

with physical reality. Calculus ‘works’ by producing excellent approximations. It can even  

create approximations for fictitious things.   

In spite of its power, and at the risk of sounding facetious, we could state that calculus is 

the process of doing things that can’t be done to things that don’t exist. Perhaps it is better to say 

that calculus is built upon oxymorons. Take, for instance, instantaneous speed. An instant is the 

temporal equivalent of a point and as such has no dimension. Since speed is a function of time 

and distance and distance, in the case of an instant, is zero it follows that at any given instant the 

speed is zero. The same problems arise in the study of curved lines and it is precisely this 

problem that led to the development of the calculus. Instantaneous speed became the derivative 

of a real value function. This is one of the most brilliant creations that man has ever developed 

but even such a mind as Einstein has stated often that our mathematics does not reflect physical 

reality. Bishop Berkeley went so far as to say that infinitesimals are the ghosts of departed 

quantities. 
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If you can do it and it seems to work – why not? The explanation that calculus is counter-

intuitive is dodging the issue. If we were to define a proof for the Mean Value Theorem we 

would begin by setting up the condition that if a function f is continuous on the closed interval [a, 

b] and differentiable on the open interval (a, b)……… let’s stop there. In order to be continuous 

a function must consist of dimensionless points. If point has dimensions the function ceases to be 

continuous. This is expressed by [a, b]. To create the open interval, (a, b) we remove a 

dimensionless point from either end of the function. 

The abstract nature of much of our math goes back at least to Euclid. Euclidian geometry 

is, in itself, abstract. A dictionary defines a point as ‘thought of as location in space but having 

no dimensions. It then goes on to define a circle as a curved line every point of which is 

equidistant from a center point. There is no rational value for π because a circle is an abstraction. 

The Fourier series attempts to show us everything and everything is not what we need. 

This paper will attempt to prove that every aspect of music is both non-linear and digital. The 

mathematical approach used in solving the riddle of music is, in fact, the problem itself. 

Linearizing a non-linear system is the primary approach taken with much of the mathematics of 

scientific thinking. It is the heart that drives the calculus.  

This is not a criticism of the calculus, as calculus is a powerful tool and the linear 

approach is all too often quite necessary. It is difficult, for instance, to imagine solving a problem 

of orbital mechanics without using continuous functions.  

The significant scientific research of the last century has showed us that many, if not all, 

of the things we accept as analog in nature are, in fact, discrete. The mathematics we use to work 

with them was designed to define all waves as being continuous. Once the existence of the atom 

was established matter could no longer be thought of as being comprised of a collection of 

infinite points, and yet, all mathematical methods of understanding the mechanics of matter treat 

it as though it were (consider fluid dynamics or tensor calculus). 

Consider heat and light. Plank established the fact that heat was not continuous but rather 

was comprised of discrete packets, the quanta. Einstein did the same with light, establishing the 

fact that light as well was not continuous but was also comprised of packets, the photons. 

Mathematical descriptions of both of these, for the most part, still treat them as fields. Those 

pillars of physics, the Maxwell equations, are field equations, written at a time when the common 

belief was that electromagnetic radiation traveled on the ether and that such fields were 

continuous. For much of physics such reliance of continuous functions are necessary as non-

linear solutions are not common. No such necessity exists for music. Music is discrete. There is 

nothing in all of music that cannot be defined by integers. 

Music is physics. It is its own physics. It can be said that music is a branch of physics, a 

basic branch. It has been said that music and mathematics have much in common when actually 

music is a mathematical system in its own right. The definition of this mathematical system is 

complete within itself and is digital. There are no negative numbers, there is no zero and there 

are no irrational numbers. The beauty of music as a mechanical system lies in the fact that it can 

be described by mathematics composed entirely of positive integers.  

Part one of this paper fully describes that mathematical system. This paper defines both 

mathematically and physically the basic structure of sound.  In fact, anything that makes a noise 

does so by creating a slightly different version of the same basic structure. A device that creates 

this structure will create a sound experience that will be indistinguishable from the one created 

by these few strands of soft horsehair across an elastic material under stress or any other sound 

that we might imagine.  

This paper also puts forth a definition of the structure that is speech. Everyone today 

trying to ‘speak’ to machines is trying to do so with wave structures that were analyzed by an 
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oscilloscope, an analog device. The problem is augmented by the fact that the oscilloscope gives 

a distorted picture of, not only speech but of the musical sounds as well. It does not offer a clue 

to the fact that speech and music are two separate and distinct physical functions. 

The big buzz today is ‘digital’ music. What is actually being done is the chopping up of 

an analog wave into small sections. In reproduction the small chunks are reconstituted into the 

same analog wave. This is merely an efficient way to store an analog waveform. It is in no way 

digital music. It is the purpose of this paper to define true digital music. 
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 God invented the integers 

 man invented everything else 
 Leopold Kronecker 
 

Here is the problem. There are twelve keys to the octave on the piano. Since all keyboard 

instruments use the same keyboard they all have the same twelve keys to the octave layout. 

However, in order to play a complete enharmonic system and keep everything in tune, the 

keyboard would require thirty-eight keys per octave. This would make the piano very hard to 

play and equally hard to construct. 

The advantage of the keyboard is that with it you can play a bunch of notes all at the same time 

and play them, at least it would appear that you could, in any key. To the uninitiated a key is a precise and 

structured generation of frequencies. These frequencies are fixed and do not change and are numerically 

related by very simple ratios, ratios formed by small integers. 
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The problem arises when we allow the generating tonality (or fixed, basic pitch) to change. Most 

of the music that has existed in the world appears to have been based on a single, unchanging 

generator tone. Japanese music, Chinese music, East Indian music, American Indian  
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music and ancient Greek music, all are music systems that never change their generating 

frequency. Indian Ragas seem to be always in the same key.  All Sitars seem to be the same size.  

With the exception of our own, all the music systems ever discovered have been structured on an 

unchanging tonal center. The idea that a note of the scale that is not the fundamental could 

become the fundamental of another structure apparently never arises in such cultures.  

Sometimes the absolute pitch of the tonality becomes fixed in the society, that is, every 

piece of music a society sings or plays will be in the same 'key'. A society whose pitch is BH 
would remain BH for thousands of years in many cases. The need to create instruments would 

necessitate this even if the pitch did not remain fixed in the society by means of tonal memory. 

A modern example of this is the Vietnamese language. In this language the  

actual pitch of the word affect the meaning. It is not surprising then that some ninety  

per cent of Vietnamese have absolute pitch. 

 There is a big advantage to an unchanging fundamental. All of the notes of the scale 

generated by a given fundamental are as fixed as the fundamental. In most societies there is a 

definite reason why the pitch of the commonly used fundamental would be constant. This will be 

discussed in a later section of the paper. 

 Music is innate in man and its mathematical structure is an absolute. We can safely 

assume that on any planet in the universe music would develop and it would have the same 

structure. There has never been a social structure discovered that exists without it. There is 

reason to assume that we sung as a species before we spoke. Singing is more natural, especially 

in tribal situations. 

This innate quality is further supported by the fact that all systems have a common scale, 

the pentatonic or five-tone scale. A few cultures have extended this scale but the basic pentatonic 

scale is always present and with one rare exception it is always formed by the exact same ratios. 

The pentatonic scale of the Chinese, the American Indian, the Ancient Peruvian and all others 

are absolutely identical. There is a physical reason for this. 

It is quite probable that the scales of most of the species that have existed stopped at five. 

We would probably all assume that most of the Paleolithic societies had pentatonic music and 

that is probably true. I suspect that there may have been a few who developed more complex 

versions of this scale. If we consider the length and stability of Paleolithic cultures we must 

guess that some of these societies developed music much more complex than simple pentatonic. 

One example is the music of India. This system is very old, was developed totally by rote and 

does indeed extend the pentatonic scale. We can see this in Japanese music, Bantu music and the 

music of the ¡Kung of the Kalahari. 

Any time the scale develops to five distinct pitches we have the phenomena of the 

comma. The comma is a mathematical inevitability. It appears when the scale reaches at least 
five tones. It is the comma, more than anything else, which allows the creation of all scales and 

harmonic systems. It was certainly known to the ancients. The ancient Greeks defined it 

mathematically but there is evidence that it is quite likely that every culture that uses music 

(which is probably every culture) is aware of it. Incan pan flutes have pipes tuned to very small 

intervals. These were quite probably used for comma displacement. 

It is these commas (there are several) that create the problems found in tuning keyboard 

instruments. The most used method of solving the comma problem in modern society is the 

tempered scale. Before we embark on the study of the phenomenon of the comma let us first 

explore the nature of tempered tuning. 
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THE TEMPERED SCALE 

 

The even-tempered scale is the diabolicus in musicum of the modern world.  Its very 

usefulness overshadows its dangers.  Without this scale, of course, the piano would not be as 

effective as it is.  Jazz would probably not exist and it is debatable if Wagner or Debussy would 

have happened, or for that matter, Scott Joplin. It has become so accepted as the foundation of 

musical theory that few people (including musicians) are particularly aware that such dangers 

exist. Even before we develop the mathematics of the enharmonic system, simple logic (and, 

hopefully, our ears) tells us that the tempered scale is not the most desirable solution to the 

problem. As with so much mathematical thinking it represents an attempt to linearize a 

completely non-linear system. 

Music is usually defined as being an analog system. This is considered to be as intuitively 

obvious as motion and time. Someone once figured that it we could put a small pen on the end of 

one of the forks of a tuning fork and then move a sheet of paper past the pen the pen would draw 

a sine wave. This phenomenon is used to support the notion that the sound of a tuning fork is 

simple harmonic motion.  This is a mistake. A swinging pendulum is simple harmonic motion 

but the blades of a tuning fork bend and this bending is quite different than simple harmonic 

motion. 

The amount the fork bends is very small but the forces set in motion by the bending of 

hardened steel are amazing. It must also be remembered that the blades of the tuning fork do not 

create the sound wave directly, at least not the structure we are interested in. They create another 

phenomenon that actually interfaces with the airborne wave. This is a stationery wave that forms 

in the cylindrical part of the tuning fork.  

This paper will prove that every aspect of music is both non-linear and digital. 

Linearizing a non-linear system is the primary approach taken with much, if not, most, scientific 

thinking. It is the heart of calculus. This paper establishes the fact that music requires absolutely 

no such linearization. Music is discrete. There is nothing in all of music that cannot be defined 

by integers. 

Music is physics. It is it’s own physics and music is a mathematical system in its own 

right. This mathematical system is complete within itself. There are no negative numbers, there 

is no zero and there are no irrational numbers. The beauty of music as a mechanical system lies 

in the fact that it can be described by a mathematical system composed entirely of positive 

integers. Part one of this paper fully describes that mathematical system 

 

THE MUSICAL SCALE 

 

We must define just exactly what this even-tempered scale actually is, and 

precisely what it attempts to replace, that being the enharmonic scale.  It does not replace the 

chromatic scale, as is usually assumed.  A just-tuned chromatic scale is quite a simple structure 

and is easily achieved mechanically.  No solution so exotic as the tempered scale would be 

necessary if one chromatic scale would be sufficient for all musical requirements. 

A musical scale is, by conception, a scale of function, not a scale of measurement.  

Measuring a functional scale with a linear ruler is self-defeating. It arose because of tuning 

problems inherent in keyboard instruments. It was most likely the keyboard that influenced the 

development of musical calligraphy, as our calligraphy is better suited to tempered tuning than to 

natural tunings.  

Most instruments as well as the voice are able to make the slight but discrete changes in 

pitch necessary to keep concerted music in tune. Even keyed instruments such as winds and 
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brasses are able to make those shifts. The notion of an isometric scale goes back at least to 

ancient Greeks although it is only in recent times that it has come into common usage. 

 Because of the fact the he wrote a suite of preludes and fugues called The Well 

Tempered Clavier, the invention of the scale is often attributed to J. S. Bach. Bach did not invent 

this scale and in all likelihood he did not use it. A harpsichord player in Bach’s time would have 

selected a tuning that best served the key of the piece of the Well Tempered Clavier he was 

playing, just as such players would likely do today. (It must be remembered that, of all the tuning 

systems available, tempered tuning is by far the most difficult to achieve and certainly the least 

satisfying.)  

If we had to choose an inventor of this scale it would most likely be Andreas 

Werkmeister. Werkmeister theorized the scale in 1690's at just about the time that Newton and 

Leibniz were solidifying the calculus. This is probably not coincidence. Even the Werkmeister 

system used half tones that were unequal. A true isometric scale did not become accepted until 

late in the nineteenth century when British organ manufacturers ushered it in. 

Ever since the Renaissance, scale construction has been tricky. Not only must the tones of 

the scale progress by intervals defined by very simple, basic ratios, but rather they must form 

simple, basic ratios with all other scale members as well. The intervals themselves derive their 

names (which themselves are functional) from their position in the diatonic scale. 

 

 
 

 

 Thus a fifth is defined as being the interval from 1 to 5.  In the system of Do - Re - Mi`s this 

would be from Do to sol. 

 

 
In the nomenclature of music intervals there are seven such intervals, plus their 

modifications (major, minor, augmented, etc.). 

All sound is the product of vibration and all vibration is integral.  For this reason any two 

frequencies sounding together form an interval.  The intervals that make up music, however, are 

constructed from a very few basic ratios.  By basic is meant ratios that are formed by two small 

integers.  These will be completely defined in this paper.  Of these few intervals, the ear demands 
that three of them be kept perfect.  These are the fifth, the fourth and the major third. 

The ear is exquisitely sensitive to the tiniest deviation from the simple, perfect ratios that 

create what we call music.  Every culture that has ever existed has valued those individuals who, 

while singing or playing, keep these intervals exact.  The mark of any successful musical 

performer on the planet is that person's ability to sing or play in tune.  Placido Domingo sings in 

tune very well.  So do Barbra Streisand and the Gatlin Brothers.  In spite of the almost overriding 

effect the tempered scale has had upon the art in the modern era, most aspects of the art still 

demand proper tuning.  The charm of both the string quartet and the barbershop quartet comes 

from the ability of the quartet members to create, between each other, the correct ratios. 
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The larger the number of notes in the scale the more difficult it becomes to keep all the 

possible intervals that can be formed ideally tuned.  The most prevalent scale in the history of 

mankind is the pentatonic or five-tone scale.  

 

                 
 

 

It is not likely that a culture has ever existed that did not have this scale and it forms the 

basis of absolutely all other scales.  In its ideal form (defined in this paper) all of the intervals 

formed are ideal but one.  

C to E (do to mi) is an ideal major third; E to G (mi to sol) an ideal minor third; D to G (re 

to sol) an ideal perfect fourth, etc. The one ratio that is not ideal is the fourth E to A, (mi to la) 

which is sharper than it should be. The ideal fourth should be 
3

4  but the fourth E to A turns out 

to be 
20

27 . This discrepancy can be shifted internally but cannot be eliminated.  If A is lowered 

to a pitch that will produce, with E, and ideal fourth of 
3

4 we find that the fifth D to A (re to la) 

has now been reduced by exactly the same amount that the fourth has been raised and would now 

be equal to 
27

40 . No matter what one does at least one of the ideal intervals will be raised or 

lowered, and always by the same ratio. 

This small discrepancy is known in music as a comma.  This comma is constant, discrete 

and is an integral part of any scale system.  Even a scale so simple as the pentatonic cannot be 

created without it. 

If one starts with the C that lies two notes from the bottom of the piano keyboard and one 

plays consecutive fifths above this, C (C to G, G to D, D to A etc.) one finds that not only do we 

play every note of the chromatic scale, but we end up back at C, now the very top note of the 

piano.  This progression of twelve consecutive perfect fifths requires seven octaves.  

Mathematically octaves are the power series of 2. Being seven octaves, if we let the initial C be 

equal to 1, the top C should equal 128 (
7

2 ). On the other hand a perfect fifth is 5.1
2

3   and   

1.5
12

 = 129.746337890625.  Twelve superposed fifths is higher in pitch than seven superposed 

octaves by the comma of Pythagoras. 
 

547705078121.01364326
128

890625129.746337

2

5.1
7

12

  

 

This comma, 1.0136432647705078125, is discrete and is the rational quotient of 312 divided by 219. 

547705078121.01364326
524288

531441

2

3
19

12

  

 

Structurally it is created by the interaction of two more basic commas that will be 

developed in the course of this dissertation. 

Because of the seeming immutability of the fifth (we do after all define it as perfect) it 

would seem logical to assume, initially, that the chromatic scale formed in this manner is 

isometric.  Actually, however, this Pythagorean comma (1.0136432647705078125) is not equally 
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divided among the twelve fifths.  Nine of the twelve fifths are indeed perfect, the other three are 

not. 

The system is kept in tune by slight but discrete shifts in the pitch of various notes of the 

scale.  The voice, as with most instruments, has this capability of being able to make these subtle 

shifts.  Such instrumentalists and singers find that they are constantly altering the pitch of the 

various tones of the piece being played.  For pianists and organists (and all other keyboard 

players) the experience of making music is quite a different experience. Even a keyboard player 

with a sense of pitch cannot affect the intonation of his instruments in any way. 

Ever since the concept of the keyboard-addressed instrument arose the primary problem 

has been one of properly tuning it.  A given generator must produce a musical tone and this 

generator must be pitched.  If a performer wishes to play more than one note he must either 

change the pitch of the generator or use more generators, or both.  A violin uses four generators, 

each of which can be modified by changing its length.  Winds and brasses change the effective 

length of the bore as well as sounding the higher harmonics of any given length.  The voice 

(which is truly awesome in its ability to effect the subtlest change in frequency) controls 

frequency by a nearly analog control of the tension of the vocal chords. 

For the most part the keyboard instrument utilizes a different generator for every note.  

For this reason one cannot play very many notes without building a very cumbersome device.  

Unlike their more versatile cousins, the keyboard instruments tend to be cold, impersonal and, 

until the emergence of the piano, virtually expressionless.  The one thing the keyboard can 

accomplish that makes it unique is the ability to play concerted music.  The violin can play at 

most four notes simultaneously, and can sustain but two.  Winds and brasses can play but one 

note at a time (apart from occasional over blowing).  The keyboard, on the other hand, can sound 

all of its notes simultaneously.  It is this capability that makes the concept of a keyed instrument 

so fascinating.  The price the keyboard pays for this simultaneity is the loss of the ability to make 

those small, but extremely critical shifts in pitch. 

In earlier times the tuning problem was solved by tuning the notes of the keyboard 

instrument, as closely as possible, to the scale tones of the piece being played.  In such a case the 

keyboard was quite effective. As music went from the parallel tonalities of the Middle Ages to 

the changing tonalities of the Baroque the demands on the keyboard instrument increased. 

The chromatic keyboard treats every semitone as if it were equal. We shall discover, in 

the course of this paper, that the true chromatic scale is actually comprised of three distinct 

intervals whose sequence is ordered by the fundamental tonality.  The keyboard strongly 

influenced the development of our calligraphy, and this calligraphy, as with the keyboard, treats 

the chromatic scale as if it were isometric. 

It is impossible to effect an acoustical tuning that allows us to keep all of the possibilities 

contained within a chromatic scale (for instance every possible perfect fifth) in tune.  For that 

matter it is impossible to effect a tuning that can keep all of the possibilities of a diatonic scale in 

ideal ratios.  We have seen earlier that even the simple pentatonic scale is unassailable.  An 

effective way to accurately change the tuning of a keyboard instrument instantaneously has never 

been accomplished. No such problems exist today, however, and that provides for the basic 

premise of this argument. 

If we let our thinking be influenced by the linearity seemingly offered by the keyboard 

and by our calligraphy, a hypothetical, but impractical solution suggests itself. 

The admission of systems based on irrational roots into mathematical procedures, which 

occurred to a great degree during the latter part of the seventeenth century, profoundly affected 

all manner of philosophical and scientific thought.  It set off serious debates that rage even today.  

Once such irrational numbers as the square root of two came to be thought of as being real, many 



 12 

things become possible.  The price for all of this, however, is the danger of losing touch with 

certain aspects of physical reality.  Such is the case with the utilization of the even-tempered 

scale. 

It is important to the formation of an enharmonic scale that the series of twelve 

superposed fifths and the scale of seven superposed octaves be equal, ergo one of the series must 

be altered.  The single most significant aspect of the octave is that it is an interval composed of 

two pitches that sound the same note.  All octaves are equal to one another and are represented 

by the power series of two.  In the mathematics of music all numbers of a binary series are the 

same, or more succinctly stated,  
1 = 2 

Even the tempered scale does not tamper with this concept. 
A more direct way to make the series of fifths coincide with the octave series would be to 

shrink all of the fifths by an amount necessary to make the 129.746338 of the series of fifths equal 

to 128, or 27.  The new tempered fifth would now be equal to 12128  or 1.49830708.  A perfect fifth 

is formed by the absolute ratio 5.1
2

3  .   

The amount of deviation between the perfect fifth and the tempered one is equal to an 

interval of 1.00112989. 
 

275250011290906.1
74983070768.1

5.1

128

3
4

12
  

 

121.013643271.00112989  

1.00112989 is a very small interval and it is for this reason that the even-tempered scale 

works to the degree that it does.  

In order to understand the mechanics of intervallic hearing let us assume a simple 

physical experiment.  Imagine two similar sound generators, each creating exactly the same 

frequency.  To keep things simple we will also assume that they are in phase.  What we hear is a 

single pitch that is, quite literally, twice as loud as either generator taken separately.  Now we 

slowly induce an analog variation in the pitch of one of the generators.  We can slide the pitch up 

or down, it does not matter as the effects of one direction is the precise reciprocal of the other.  

As the two frequencies diverge things begin to change.  The overall cumulative sound is 

decreased.  At the same time the two frequencies (now separate) create a completely new 

structure between them. 

Airborne sound is the result of cyclic variations of the air pressure.  When these pressure 

pulses are in phase they reinforce each other.  When they are not in phase interference patterns 

are created that cause, in turn, new cyclic variations in the ongoing sound.  Each cycle of the 

slower frequency falls a bit more behind on every sounding. Once the middle point is reached the 

exact reciprocal occurs, the cycles of the slower frequency now gaining on the faster until they, 

once again, sound together. This new cyclic variation creates a new pitch that sounds at the same 

time as the frequencies producing it and becomes an integral part of the interval itself.  This 

effect is known as differentiation and these differential results cannot be avoided.  

As the tones first start to diverge this differential cycle is very long. The flow from low 

pressure to high pressure is too long to be perceived by the ear.  As the divergence increases the 

frequency rate of the differential tone increases.  The interval between the just tuned and the 

tempered fifth (1.00112989) lies right on the cusp between where the ear can and cannot perceive 

this pressure fluctuation. 
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Once detectable, this cyclic variation is known as a beat pattern.  A beat can be defined as 

a detectable frequency pattern lying below that pitch which produces a sensation of pitch (about 

16Hz.).  If the input volume is sufficient this beat pattern can become extremely annoying and 

even dangerous. 

The divergence between the true perfect fifth and that approximated by 12128  is small 

enough so as not to create a beat pattern that is very disturbing.  Because it is the inversion of the 

fifth, the same is true of the fourth.  Unfortunately this is not true for any other interval in the 

twelve-tone scale. 

We can see from our experiment on the piano that the twelve notes we play when we traverse the 

keyboard by fifths are exactly the same as those that comprise the chromatic scale.  When we shrink the 

series of fifths we shrink the scale of half tones as well, (which, like the series of fifths is now isometric).  

Each of these isometric half steps is now equal to 12 2 . While this isometric scale is exponential, 
 

)2(
12 7 =1.4983070768766..... = 12 128  

 

the problem is made even worse by the fact that the even-tempered third, because of the nature of 

its formation, forms a replacement for the Pythagorean Third 
64

81  and not the preferred 
4

5 .  

The ideal major third is )
4

5(25.1 whereas the Pythagorean Third is 
64)

81( 1.265625 .  It is 

the value, 1.265625 that the tempered third replaces.  A major third is comprised of four 

consecutive half steps, thus: 
12 4

2( = 1.25992103  = 3 2  

 

Since the only major third that the ear tolerates is 1.25 the discrepancy is  

 

1.25

1.25992103
 = .007936821  

The beat pattern produced here is both noticeable and annoying.  It beats about six times 

a second (it is in fact this beat pattern that piano tuners use to check the accuracy of their tuning). 

Since there is no meaningful mathematical relationship between the tempered scale and 

the just tuned, it follows that none of the various beat patterns (and with the exception of the fifth 

and the fourth they are all easily discernable) will have any meaningful acoustical relationship.  

Because of the resulting interference patterns these beat structures diminish both the amplitude 

and the quality of the overall sound complex.  The more complex the frequency structure the 

worse the problem, which is indeed cumulative. 

Symphony orchestras play in tune to a degree that is quite amazing.  When an 

orchestrator lays on sound by adding various instrumental groupings the sound gets richer and 

fuller with each new addition. The reason for this is the fact that each addition is sounding the 

same basic structure and creates the same differential tones.  

Because of the effect of the beat structures, such adding on has just the opposite effect 

when the added instruments are tuned to the tempered scale.  Consider that one virtually never 

hears groups of tempered instruments.  While occasionally one hears two pianos there are 

certainly a dearth of organ duets, or even more practical accordion duets. 

The same is true for the synthesizer.  The modern synthesizer is small, portable and 

ubiquitous and yet synthesizer ensembles are virtually non-existent.  Even when a single 

synthesizer is used the orchestral, add-on approach actually weakens the overall sound creating a 

muddy, beat-laden structure that is not particularly attractive.  This is what most people actually 
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dislike about the synthesizer, and for good reason.  Tuning is only part of the problem, however, 

as the same erroneous approach is taken with tone production, creating exactly the same 

problem.  This will be thoroughly explored in later sections of this paper.  

As we continue the divergence of the two frequencies the beat structure becomes fast 

enough to be interpreted as a tone in itself.  As the divergence continues a point will be reached 

wherein the newly produced differential tone forms a very simple relationship with both 

generating tones.  This is heard as a real tone and increases the amplitude of the initial interval to 

a surprisingly great degree.  This phenomenon is known as consonance and works in the 

following manner. 

Let us assume two frequencies tuned exactly to 200Hz.and 300Hz, respectively.  This 

produces a true perfect fifth.  The resultant or beat structure produced by the simultaneously 

sounding of these two frequencies is exactly 100Hz.  Middle C would be actually 264Hz in modern 

tuning but allowing it to be 100Hz makes the math easier. This produces the following musical 

structure: 

 
 

This resultant tone is the lower octave of 200Hz.  It is this that causes the enchanting synergistic 

effect when true consonance is achieved.  From a structural point of view the study of music is 

the study of the differential tone. 

The top row is beating two beats in the same time period that the middle row is beating 

tree beats. The bottom row shows the position where the the top two rows coincide. The bottom 

row represents the differential. 

 

             

             

             

             

             

 

When these patterns are actual pitches the bottom row (the differential)  is very real and is 

heard as such.  It is the only reason that we consider some intervals to be consonant and some 

dissonant.  In the case of prime intervals this coming together is always equal to the fundamental. 

This ‘three against two’ pattern was very significant to practitioners of early music, both as the 

interval of a perfect fifth as well as the rhythmic figure of three beats in the same rhythmic 

interval as two beats. It is known as a hemiola. 

 When the resultant tone is not equal to the fundamental the tone formed, being a real 

tone, interacts with the other sounding tones (including other differentially created tones) to form 

still another resultant tone, etc., etc.  The more obtuse the ratio of the entering tones the more 

complex and obtuse will be the resultant differential structure. 

Mathematically the differential tone is a gift from the Gods.  From the higher frequency 

subtract the lower frequency; the result is the differential tone.  In the above example we see the 

simplest possible combination, 3 - 2 = 1.  Any interval made up of consecutive numbers (
2

3
4

5   

15
16   

45
46   

257
258  etc.) will form, as its differential tone, the fundamental, 1, and nothing else.  
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All of the primary intervals used in music (fifths, thirds, seconds, etc) are just such intervals.  We 

shall refer to these intervals as prime intervals.  A prime interval then is any interval whose 

differential tone is 1 (i. e., formed from consecutive integers).  The reason that the scale system, 

which demands that all intervals formed be absolute, tolerates such discrepancies as appear in scales 

as simple as the pentatonic is that the interval of the discrepancy, the comma, is itself a prime 

interval.   

To understand the numerical nature of this comma, consider the method of tuning an 

instrument utilizing four separate generators, such as the cello or violin.  Because of the vertical 

lining up of the differential structure, differential tones sound with all other tones (differentially 

produced or not) to produce still more differential tones which, in turn sound again with absolutely 

everything, etc., etc.  The more oblique the relationship between the initial frequencies the more 

complex will be the differential structure, the most effective points at which to stop the strings are at 

those points where the differential tones are the simplest, most basic ratios with the generating tones 

and with each other. 

In the following chart we will consider the first vertical column of four separate generators, 

each tuned a perfect fifth apart.  5.1
2

3    This is the method of tuning employed by violins, violas 

and cellos.  

  

Again we will let C = 100.  

 

A is higher than D by a perfect fifth 5.1
2

3

225

5.337


D

A
 

  

as is D over G,     5.1
2

3

150

225


G

D
 

 

and G over C    5.1
2

3

100

150


C

G
  

 

The table shows the first six overtones of each generator. 
 

C C G C E G 

100 200 300 400 500* 600 

G G D G B D 

150 300 450 600 750 900 

D D A D FG A 

225 450 675 900 1125 1350 

A A E A CG E 

337.5 675 1012.5* 1350 1687. 5 2025* 

  

 We can see the comma between the E of the A row (1012.5), the third overtone of A 

and the E of the C row (500) the fifth overtone of C.  If we bring the E of the C row (500) into the 

octave of the E of the A row (1012.5) we can observe that there is a discrepancy between the two 

differing values of E.  Since 1 = 2, 500 = 1000, and thus the discrepancy, 

0125.1
1000

5.1012
 . 
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This number (1.0125) is the decimal value of the prime interval 
80

81 .   

0125.1
80

81
 . 

If we were to add a fifth generator, which would be E, to the complex we see that its value 

would be 506.25 (337.5*1.5= 1.5) This conflicts with the E of the C column in which E is 500 producing 

the same discrepancy.  

 

0125.1
500

25.506
 . 

This is the same problem we discovered in the pentatonic scale.  In a properly tuned 

pentatonic scale the fourth E to A is imperfect.  It is sharper than a perfect fourth by the same ratio, 
1.0125  

0125.1
..33333.1

35.1

3
4

20
27

  

 If a viola is playing on the C string but the controlling tonality is E the violist must play the E 

on the C string sharper than if it were controlled by a tonality in C and the raised pitch will be 

exactly 1.0125 times the C controlled pitch. Many things can control the pitch. In modern music the 

pitch is usually controlled by an aggregation of instruments with a standard pitch. A drone (such as 

East Indian music) often controls it and often it is controlled by the environment in which the music 

is played. Actual free melody (that is, with no controlling influence) while fairly uncommon allows 

for easy linear displacement of the comma. Linear displacement is the first method of comma 

displacement that evolves. This is why studies of people singing scales as being an indication of 

preferred tunings is irrelevant. Without an underlying pitch control a scale is apt to be most 

anything, yet it is these very studies that cause some physicists to insist that tuning is unimportant 

because people do not sing a consistent scale. 

 This study would be more significant if a singer were allowed to first sing in the open with 

no other sound. Then allow the same singer to sing the same scale in an area that supports the 

structure of the scale being sung (such as a good concert hall). The results will be self-explanatory.  

An excellent example of linear comma displacement is the medieval organum. Singing the 

same melody a perfect fifth apart creates the organum. In order for the consecutive fifths to remain 

pure the A (if the governing pitches are C and G) of the lower melody is lower than the A of the 

higher melody by 1.0125. The organum is usually sung in an area that is highly echoic and this area 

provides an excellent natural accompaniment. This is a big reason for the exciting sound of the 

organum. It is an example of true polytonality. 

As mentioned previously this discrepancy can be moved around in a properly tuned 

complex but cannot be avoided.  When one member of a string quartet adjusts the pitch of the note 

he is creating by a small amount in order better to tune with other members of the quartet, the 

amount of adjustment he will effect is in virtually every instance equal to exactly 1.0125. 

We call these small discrepancies (and there are several) commas.  We shall discover other 

commas of great import, but none quite so valuable as this one, the age-old comma of Dydimus. 

 

0125.1
80

81
  
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THE BASIC INTERVALS 

 

Everything in music is generated exponentially.  We have just observed the first example, 

the octave.  The octave is so named because it is the eighth step in a scale of seven steps.  More 

important to this discussion is the fact that the ratio of the octave is 
1

2 .   

It is unique among intervals in that both notes of the interval are heard as being the same 

note.  That means that structurally 
1

1
1

2  .  Neither interval produces a differential tone and they 

are the only intervals that do not do so.  All of the energy of 2 goes into strengthening every cycle of 

1.   

Because of this quality 
1

2  must become the limit of the scale. Whatever we do, it must be 

done between 1 and 2, for at 2 it all begins again. 

One of the big problems that arise in understanding music comes from the belief that the 

octave, or 
1

2  defines a distance and that scale steps are units of linear measurement.  A scale is the 

product of a series of interlocking intervals which, when multiplied together equal 2.   

A musical scale is a scale of function; it is not a scale of measurement. 

A scale tone is a function of where it is going and what is sounding with it. 

When intervals are superposed, that is, when the upper tone of one interval becomes the 

lower tone of another, collectively they form a larger interval that is the product of the intervals 

themselves.  A perfect fourth superposed with a perfect fifth will produce an octave. 

 

 

0.2
1

2

6

12

3

4
*

2

3
  

            

 This example illustrates the basic conflict between structural and linear approaches to resonance.  

In a resonant structure a note 1.5 times the fundamental (1) marks the point halfway between 1 and 2.  

In a linear system a point halfway between 1 and 2 is 2 .  

If we examine the previous example in a higher octave  

 

1

2

96

192

12

16
*

6

12
  

 

We can observe the following; between 8 and 12 are three overtones 9, 10, 11.  Also between 

12 and 16 are three overtones 13, 14, 15.  We shall discover that because they are inversions of each 

other, the fifth and the fourth are versions of the same interval.  Structurally the central point of the 

octave is that point that lays 1.5 above the fundamental. 

An isometric central point is a physical impossibility.  A frequency, by definition, is both 

discrete and integral and there exists no integer which when multiplied by itself will equal 2. The 

note in the tempered scale that is represented by 2  is the tritone.  In the chromatic scale the tritone 

is the note most remote from the generator or fundamental. 

 If 1 = 2 it follows that any octave within the series is equal  

512

1024

8

16

1

2
  
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We may consider 
1

2  as being the prime octave.  It is not until the second octave, 
2

4 , that an 

integer appears between the terminal points of the octave. 

Since 1 = 2 all versions of the power series of 2 are the same note.  This structure 
1

2  has 

great acoustical value but little musical value.  To create music we must be able to sound different 

notes.The first such division of the octave occurs in the second octave 
2

4  and is, of course, 3. 

2 4 

 3 

1 2 

 

The ratio 
2

3  is the next interval after 
1

2 in the hierarchy of ratios, or intervals, to use the 

musical terminology.  This interval is known in music as the perfect fifth (again named for its 

position in the seven-tone diatonic scale).  The top half of the octave is the ratio 
3

4 .  This interval is 

third in the intervallic hierarchy and represents music's perfect fourth.  An overtone cannot exist in 

any octave before its actual entry as an integer, that is, 3 cannot exist in the octave 
1

2 .  However, if 

the ratios are expressed as decimals a more efficient way is produced to mathematically understand 

music's various phenomena.  Thus 5.1
2

3  ; ...3333.1
3

4    and  0.2
1

2  .  The structure 2, 3, 4 

becomes 1, 1.5, 2.  The importance of the decimal version becomes apparent if one considers the fact 

that the inverse of the structure, 1, 1.333333, 2 cannot be stated in integers by a simple octave shift. 

The fifth and the fourth are considered to be invertible and are also considered to be inverted 

versions of each other.  

...33333.1
5.1

2
  

5.1
33333.1

2
  

 

2...33333.1*5.1  . 

The inversion of an interval is accomplished by raising the bottom frequency by one octave 

(multiply it by 2), or reducing the upper frequency by one octave (divide by 2).  Thus the inversion 

of the perfect fifth 
2

3  becomes the perfect fourth 
3

4  and the fourth 
3

4  becomes the fifth 
2

3 .  

This is made possible by the fact that 1 = 2. 

This division, 2, 3, 4 or 1, 1.5, 2 is the first example of what must be considered to be the ideal 

structure in music, that is, a prime interval that is the product of at least two smaller prime intervals.  

In this case the interval 
3

4*
2

3
1

2  .  All of the intervals in common practice harmony have this in 

common.  We shall see that the entire system interlocks. 

If 2 in this structure is C then 3 is G.  Recalling for a moment Kronecker's words, consider 

the fact that any finite frequency will have an integral relationship with C, regardless of the value of 

C.  However, if we create a perfect fourth above 1 in the octave 
1

2 , it will have a value of 1.3333, 

which does not have an integral relationship with 1.  What this means is that the fourth note of the 

scale of C-major (which would be FJ) is a note that cannot be produced in a system generated by C.  

This is a very important clue to the makeup of the enharmonic system. 

 

THE THIRD OCTAVE 

 The third octave, 
4

8 , presents a somewhat more interesting structure. 
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4 8 

 7 

3 6 

 5 

2 4 

 

Now we have two new numbers, 5, and 7.  6 is the octave of 3 and, since 1 = 2, is the same as 3.  4 

and 8 are equal to 2.  We have the first structure, 4, 3, 2 represented as 8, 6, 4.  Both the fifth, 
2

3  

and the fourth, 
3

4  are again divided into intervals that are equal in that each interval increases 

by a number of overtones numerically equal to the fundamental.  In this structure that is 1. 

 Reduced to the prime octave, 
1

2 , (in this case derived by dividing each number of the 

above structure by 4) the structure is: 

 
8 2 

7 1.75 

6 1.5 

5 1.25 

4 1 

 Here we see a consistency in numbers of the overtone series of 2.  Any number in the 

system will be a decimal ending in 5 when brought within the prime octave.  The number of 

digits to the right of the decimal point indicate which octave the value in question first appeared, 

this octave being equal to the number of digits to the right of the decimal point plus 1.  Thus 1.5 

enters the system as 3, which is in the second octave.  1.25 and 1.75 enter as 5 and 7 and are both 

in the third octave. 

 The task is made easier by the fact that we already have both the pentatonic and diatonic 

scales and we have them both in completely accurate form.  To that extent we know what we are 

looking for. The ratio 
4

5  exists as a major third (with a value of 1.25) thus if C = 1 this note is EJ.  
7 on the other hand does not appear in any of our scales.  This is not unusual, as most integers of 

the overtone system do not become part of the scale.  In fact the number of actual scale members 

is very small. 

 All scales are concerted in nature, that is, they are so designed that all of the notes of any 

scale can be sounded simultaneously.  Any new entry must form simple, musical relationships 

with all of the other scale members.  For this reason initially, 7 does not work.  This will become 

cleared as we progress.  If C = 1, then 7 lies very close to the note BH.  As we develop the 

chromatic scale we shall discover a better value for BH. 
 The complex 4, 5, 6 is the prime value of the root position of the major triad.   

 

 
  

 In the prime octave this is 1, 1.25, 1.5.  Since 1 = 2 the triad can also be defined as 1, 5, 3.  

While 4, 5, 6 is considered to be the root position of the major triad, it is not the simplest version.  

The complex 4, 5, 6 is defined in music as being a chord.  A chord can be defined as an interval 
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that is the product of two or more intervals.  In the triad, the fifth 
2

3
4

6 or , which forms the 

outer two notes C and G is the product of the major third 
4

5 , and the minor third 
5

6 .  Decimally 

this would be 5.12.1*25.1  . 

 A chord, just as with an interval, can be inverted, either by multiplying the bottom note 

by 2 or dividing the top note by 2.  This process is known in music as octave shifts.  If we raise 

the bottom of 4, 5, 6 we get 5, 6, 8 or E, G, C. 

 

 
  

This inversion of the triad is known as the six chord, so named because of the interval formed by 

the outermost notes, E and C.  Harmonically this version is considered to be a weaker version of 

the triad than the root position but it remains functionally a major triad in all respects.   

 On the other hand if we lower the top of the triad 4, 5, 6 we get 3, 4, 5, which, because of 

its position in the overtone series can be said to be the prime position of the triad. 

 

 
  

This six-four chord so named because it is constructed intervallicly from a sixth and a fourth (E - 

C and G - C respectively), 

 This six chord is usually considered to be the weakest version of the triad even though its 

overtone position would indicate otherwise.  This so-called weakness is actually a tonal 

ambiguity caused by so powerful a tone as the third overtone being in the bass of the chord.  This 

effect, which is a keystone in the tonal structure of music, will be explained in the course of this 

paper. 

 Regardless of this inversion the fundamental always remains C.  It could never be G for 

one simple reason.  If C = 1 then C (4) in the complex 3:4:5, lies a perfect fourth above G (3).  

Since the decimal value of the fourth is 1.333333, it is physically impossible for it to appear in the 

overtone structure of G.  C can contain G in its structure but G can never contain C.  As far as the 

integral structure of the overtone series of G goes, C does not exist.  It is this concept that 

ultimately led to the development of the diatonic scale. 

 The powerful and synergistic force resulting from intervals made up of simple ratios is 

caused by the fact that they create differential or resultant tones of equal simplicity. 

 

THE FOURTH OCTAVE 

 

 The development of a scale must be the compound effect of what one actually hears in a 

sounding overtone series.  Those tones we consider musical are always simple in structure and thus 
we are able to hear the various octaves just as the consecutive integers define them.  All cultures 

appear to have developed at least the pentatonic scale.  When scale systems become more complex, 

such as ours, the system is always an extension of the pentatonic.  In so many cases a culture will 

play the entire panoply of its existence with nothing more than the pentatonic scale.  This scale is so 



 21 

ubiquitous because it, like music itself, is innate in man.  We hear this scale, to one degree or 

another, in every sound we hear. The reasons for this will be described later in these papers. 

 A pattern has developed wherein a prime interval is further divided into two prime intervals, 

only the lower of which seems to be significant. 

 
 

The overtones of the fourth octave are thus: 

 

8 16 

 15 

7 14 

 13 

6 12 

 11 

5 10 

 9 

4 8 

 The ratio 
8

9  gives us a diatonic whole step or major second.  We shall consider this to be 

the large major second.  It produces a prime octave value of 1.125.  It is also a perfect fifth above 

G and is equal to 2
3 , the power series of three being the same as tuning in fifths.  

9
10  produces 

another major second with a prime octave value of 1.11111.  We shall consider this to be the small 

major second.  While the large major second is the ideal in actual practice the two major seconds 

are interchangeable.  The difference between the two is the Dydimus comma, 1.0125.  

  

 0125.1
111111.1

125.1
  

  

It is the ability to interchange these two major seconds (along with two minor thirds that we shall 

discover later) that permits the diatonic system to remain in perfect tune. 

 11, although less disruptive than 7, does not fit into the system for the same reason as 7.  

11 in the prime octave would be 1.375. 

375.1
8

11
  

  

However the fourth that we will use is the inversion of the fifth, which is 1.333333. 

333333.1
5.1

2
  

1

2

2

3

4

4

5

6

7

8

8

9

10

11

12

13

14

16

15
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 As with most integers, 11 simply does not fit into the system.  13 is not used for precisely 

the same reason.  14 is, of course, the first octave of 7.  15 is another story.   

 To start with it is a perfect fifth above 5, ( 3*5 ).  

 

 
 

 Tuning in fifths is equal to the power series of 3.  15 would be B in the diatonic scale of 

C=1.  It produces, with C, the ideal minor second, 1.06666666: 

 

..0666666.1
15

16
  

  

The first four notes of the pentatonic scale thus far are 8, 9, 10, and 12 or, in a more structured 

version, 1, 9, 5, 3.  While it might appear to be a logical choice, 15 does not appear in the 

pentatonic scale.  While 15 is the next integer to appear in the system it must be remembered that 

the scale in music is not a linear scale, it is exponential and the defining exponential series is the 

power series of three.  Three of the integers of the pentatonic scale are part of the power series of 

three, 1, 9, and 3, or 20
3,3  and 1

3 . For reasons that will become clear as the structure becomes 

more defined the fifth note of the pentatonic scale is 3
3  or 27.  This produces an A of 1.6875 

 

6875.1
16

27
  

  

 This forms an ideal major second with its lower neighbor, G of 1.5. 

 

125.1
5.1

6875.1  

  

 It forms a perfect fifth with D of 1.125.  

 

5.1
125.1

6875.1
  

  

 And, of course, it forms a major sixth with C, 1.6875. 

  

6875.1
1

6875.1
  

  

 This structure, 1, 9, 5, 3, 27, is the Pentatonic Scale. 
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A  =  1.6875 

G  =  1.5 

E   =  1.25 

D   =  1.125 

C   =  1.0 

 

 This scale exists in the fifth octave, 
16

32  as 16, 18, 20, 24, 27. These values, as do all other 

values in the enharmonic system, represent an absolute; there is no other pentatonic scale. 

 As previously observed this introduces the comma, 1.0125 into the fourth that lies between 

E and A. 

35.1
25.1

6875.1
  0125.1

33333.1

35.1
  

  

 All other intervals produced by this scale are ideal. Four of the scale members are 

successive generations of the power series of 3, which is, 1, 3, 9, 27. Let us list the scale with the 

power series of 3 on the vertical and 5 on the horizontal. 

 

(81)  

27  

9  

3  

1 5 

             

             This is the best structural representation of the scale that we shall find. We can see that 

the more harmonious 5 actually replaces the next step in the power series of 3, that is 4
3  or 81. 

What that means acoustically is that the ear accepts 5 as being a more satisfying version of the 

major third than 4
3 . The reason it does so is because the difference between the two intervals is, 

in itself, a prime interval, that interval being 1.0125, the Dydimus comma. The ancients were 

fascinated by this ratio and in fact the major third represented by 81 is referred to as the 

Pythagorean third. If brought within the prime octave 
1

2 , 5 = 1.25, and 81 = 1.265625, the 

difference between the two is 1.0125. As we shall see this basic structure underlies, not only all of 

music, but all of sound. 

 

THE RECIPROCAL NATURE OF THE DIATONIC SCALE 

 

 Two things are apparent in the pentatonic scale: a, the ratio 
2

3  (tuning in fifths) is clearly 

the fundamental ratio in all music and b, all of the scale members relate integrally with both each 

other and the fundamental, 1 (2).  This provides an excellent definition of a scale, that is, a 

division of any interval, usually the octave, into a series of smaller intervals each closely related 

to each other and a common fundamental. 

 As cultures become more melody oriented (and most certainly not all do) the gaps in the 

pentatonic scale become more evident and steps are taken to fill in the two minor thirds that exist 
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between the third and the fifth and between the sixth and the octave. If C is the fundamental 

these thirds lie between E and G and between A and C2. 

              

  
  

An ideal minor third is equal to 1.2. 

2.1
5

6
  

 

However, the minor third that exists between A to C (between steps 6 and 8) in the 

pentatonic scale produces 1.185185...(
27

32 ) 

6875.1

2
= ..185185185.1  

 Once again the difference between the two is the Dydimus comma, 1.0125. 

0125.1
185185185.1

2.1

27
32

5
6

  

 In vertical (harmonic) structures this comma is tolerated in just two intervals, the minor 

third and the major second. This particular minor third (
A

C ) can be avoided in the pentatonic 

scale by simply not sounding the upper octave. As with the fourth (
D

A ) this can comma cannot 

be eliminated but only shifted within the structure itself. 

 If 7 were to appear in the system this is where it would be, as AG or BH with a prime octave 

value of 1.75.  One advantage in developing the mathematics of this system is that evolutionary 

forces have already created the pentatonic and diatonic scales in their proper form.  What we 

must formulate are the chromatic and enharmonic scales.  For this reason we already know that 7 

will not work in the system and that the note we need in this spot is BJ. This B will lie a perfect 

fifth above E (1.25). E equals 5 and thus a perfect fifth above E would be 153*
1 E , and would 

have a prime octave value of 1.875. 

153*5   

 

875.1
8

15
  

 

875.15.1*25.1   

  

 It forms a small major second with A. 

 

1111111.1
9

10

6875.1

875.1


A

B  

  

 This B forms a major third with G 

. 

25.1
4

5

5.1

875.1


G

B  
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 And finally it introduces the ideal minor second with C, 1.066666. 

 

0666666.1
15

16

875.1

2


B

C  

 

 The major seventh is formed by B and C. 

 

875.1
8

15


C

B
 

  

 This major seventh introduces a new experience into the sound and structure of 

intervallic relationships. In common practice harmony it is considered to be a dissonance. The 

notion of dissonance is completely subjective; in reality there is no such thing as dissonance, 

merely higher numbers. 

 The sound of the major seventh is totally different from anything we have thus far 

encountered. The awesome serenity of the sound produced by those intervals we class as 

consonant is gone in the major seventh. The primary reason for this is that the differential tone 

produced by simultaneous sounding of 15 and 8, is 7. Bringing 7 into the system as a primary 

differential tone creates a complex internal beat structure that one finds either exciting or 

disturbing.  This is entirely a matter of taste, much as with hot spices. 

 Extending the musical scale beyond the pentatonic appears to be an act of extreme 

sophistication, as it does not appear to happen often.  

 If we put 15 into the proper spot in the scale structure we get: 

 
(243  

(81)  

27  

9  

3 15 

1 5 

  

 15 has the same mathematical relationship with 243 as 5 has with 81.  

)4*5(80
0125.1

81
  

 

)4*15(240
0125.1

243
  

  

 The ear accepts the structure as being a continuation of tuning in fifths. If this holds true 

the next note entering the scale should be 45, or 3*15 . 45 in the prime octave is equal to 1.40625. 

 

 

   

 Indeed, 1.40625 does fall between the E of 1.25 and G of 1.5. It lies an ideal major second 

above E 

. 

125.1
8

9

25.1

40625.1
  

40625.1
32

45

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 It also lies an ideal minor second below G. 

 

0666666.1
15

16

40625.1

5.1
  

  

 This presents us with a problem. The minor second below G would have to be FG and 

there is no FG in the diatonic scale of C. The interval formed between FG and C is the infamous 

tritone, which produces a differential tone of 13 (45 - 32). What we are looking for is a note that 

divides this minor third between E and G in exactly the opposite manner, that is, a minor second 

above E. This would produce F of 1.3333333. ( 125.1
25.1

3333333.1  ) This note, F, would lie an 

ideal major second below G: 

125.1
3333333.1

5.1


F

G  

  

 This would seem to work quite well but for one thing, if C is the fundamental (1) of the 

scale, such a note as F of 1.3333333 cannot exist. 

 The solution is really quite simple but as yet it is apparently such a sophisticated concept 

that it seems to have happened only once in the evolution of the various cultures of this planet. 

 Let us look first at the structure itself, as defined within the prime octave:  

 
1,   1.3333333,   1.5,   2. 

 

 
   

 If C = 1 then the structure is C FG C. We can describe this structure as adjacent fourths 

separated by large major second: 

 
 (1 - 1.333333) 1.125 (1.333333 - 2) 

 

 
2125.1*)33333.1(

2  . 

  

 Completing the scale means filling in the two tetrachords, C - F, and G - C.  However, 

since the fifth is a more basic interval than the fourth we can also describe this basic structure  

C FG C as interlocking fifths. 

  
  

 The first fifth 
C

G  presents no problem, since a perfect fifth is 
2

3 ; the bottom note of the 

fifth is clearly the fundamental.  On the other hand the second fifth does not fit. This fifth is 
F

C , 

making F the fundamental. If we let C = 1 in the structure C FG C, F cannot be defined, as it 
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simply does not exist in the integral series of C, however, C is common to both fifths, 
C

G  and 

F
C . 

 
  

 If, instead of C, we let F = 1, then C becomes the third overtone of F and G the ninth and 

the structure reads: 
C   F G   C 

3   1  9    3 

 

or, octave corrected: 

 
C   F G    C 

6   8  9   12 

  

 Therefore the structure can only be 6  8 9  12. While 8 is the fundamental, 6 appears to be 

the dominant note and in fact for a very long time the fifth note of the diatonic scale has been 

known as the Dominant. Since C FG C is the underlying structure of the diatonic scale it becomes 

obvious that the root of the scale is the fourth of the structure and that the true fundamental lies a 

perfect fourth above the root, or, more correctly, a perfect fifth below the root. 

 

MUSICAL RECIPROCITY 

 

 Pythagoras himself believed that the number 3 was the beginning of all numbers; that 1 and 2 did 

not exist. As with the six-four chord, the basic structure, C FG C, actually begins with 3. Since 1 = 

2 we can rearrange the structure so as to make the C's coincide. 

 

 C G 

F C  

   

 3 9 

1 3  

 (1) (3) 

 

 

 This is the key to musical reciprocity. If we consider C to be the dominant tone we can 

consider a move to G as being a move to the right and a move to F as being a move to the left. 

Using terms such as right and left comes from our written language and it has no meaning 

beyond this. The overtone series of C contains G and, in turn, C is contained in the overtone 

series of F. If C = 1 then G = 3 and F does not exist. If we move to the left by a factor of 
2

3 , we 

then create a new note, F, which now becomes 1. C = 3 and G = 9. If we move to the right by a 

factor of 
2

3 . G becomes 1 and C ceases to exist. Such is the reciprocal nature of music. Nothing 
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can exist that is below the fundamental, thus a point of reciprocity can never be 1. There are no 

negative numbers in the mathematics of music and there is no zero. 

 Let's return to the original structure, C FG C. Since 1 = 2 the C's are equivalent and we can 

see that in the hierarchy of intervals an interval in root position is always followed by its 

inversion. The interval next in importance following the octave is the perfect fifth that, in turn, is 

followed by its inversion, the perfect fourth. This is verified by the sequence in the overtone 

series. In this series a fifth is 
2

3  and a fourth, 
3

4 . In this structure we have a note, C, 

accompanied by the two tones closest to it, a fifth to the right and a fifth to the left (which is the 

same as a fourth to the right). This is why C is the principal or dominant tone even though F is 

the fundamental. This is the basic pattern upon which all western music is based. 

 Numerically C FG C is 6, 8,9, 12. To complete the scale we must fill in the tetrachords 6 to 

8, and 9 to 12. The shift of the fundamental from C to F creates subtle but critical changes in the 

structure of the scale. In most musical systems of the world the scale is generated totally by 

generations of an unchanging fundamental. We can think of this as starting with 1 and always 

moving to the right. Let us define this type of scale, such as the pentatonic, as right-based scales 

to differentiate them from those we shall define as reciprocal scales, such as the diatonic. We 

discovered in the construction of the pentatonic scale that if C = 1 then A = 1.6875 (27). If we were 

to keep this value when we shift the fundamental to F it would create a major third between F and 

A that would be 1.265625, the so-called Pythagorean third.  

 This third, created by the ratio 81:64 is higher than the ideal third of 5:4 by the Dydimus 

comma, 1.0125. 

265625.1
64

81
  

 

25.1
4

5
  

 

0125.1
25.1

265625.1
  

  

 If we raise F (1.33333) by a major third (1.25) we get A of 1.666666. This value of A is lower 
than the right-based value of 1.6875 by 1.0125. This is one of the more noticeable differences 

between right based and reciprocal scales.  It is, for instance, the only significant difference 

between the scale of India and the western scale. It is also the difference in the value of A in the 

pentatonic scale of C and the diatonic scale of C. This difference is consistent and is always 

1.0125. 
 As previously observed, the A of 1.6875 lies below the top C by 1.185185, the ideal minor 

third 6:5 (1.2) reduced by the comma. 1.0125.  

 

1851851851.1
6875.1

2
  

 

2.1
5

6
  

 

0125.1
1851851851.1

2.1
  

  



 29 

 The new value of A (1.6666) lies below C by the interval 1.2, the ideal minor third. Since 

this new minor third is created by a move to the left it does not exist in the series generated by C. 

In a series generated by F, however, this third is 5, and, by using the first octave (10) we can 

insert it into the C FG C structure thus: 

 
6,  8,  9, 10, 12 

 

C   F  G  A   C 

 

 While there are three notes missing in the scale (D E and B), in the number system itself 

there are only two numbers missing, 7 and 11. It makes us wonder about the origins of 

numerology and we must also wonder about just how much the ancients knew about these 

various structures. The numbers are small and the ratios discrete. It would not have taken a 

complex numerical system to understand the structures of music. 

 Since C is the principal note of the scale we can be sure that the major third above it (E) 

must be 
4

5 . If C = 6 this produces an E of 7.5  (6*1.25 = 7.5) which is the lower octave of 15. If we 

raise the structure by one octave to allow for 15 we get: 
 

12, 15, 16, 18, 20, 24 

 

C    E    F   G   A   C 

 

 Now we can see why 11 will not work. 11, which would become 22 in the scale must form 

a perfect fifth with E (15) while in fact, it forms an interval flatter than the perfect fifth (1.5). 

 

466666.1
15

22
  

 

27272721.02272727
466666.1

5.1
  

  

 1.466666 is not an acceptable substitute for the fifth. The fifth reduced by the Dydimus 

comma is only acceptable linearly. It never occurs in vertical sounding. On the other hand if we 

raise 15 by 1.5 we get 22.5, the lower octave of 45 (which is now B) and, adjusted to accommodate 

45 the scale becomes: 
24, 30, 32, 36, 40, 45, 48 

 

C    E    F    G   A    B    C 

  

 By the same reasoning we should expect that the D above the principal, C should be the 

large major second 125.1
8

9  . 27125.1*24  .  

 Thus the smallest series of integers that can represent a diatonic scale is: 

 
24  27  30  32  36  40  45  48 

 

C    D    E    F   G    A   B    C 

  

 This is the diatonic scale, as it has existed at least since the time of ancient Greece, 

probably longer.  
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 It is usually defined intervallicly as fractions thus: 

 

C 
8

9

24

27
  D 

9

10

27

30
  E 

15

16

30

32
  F 

8

9

32

36
  G 

9

10

36

40
  A 

8

9

40

45
  B

15

16

45

48
  C 

 

C  (1.125)   D (1.1111)   E (1.066666)   F (1.125)   G (1.1111)   A (1.125)   B (1.066666)   C 

  

 The diatonic scale is thus composed of only three distinct intervals: 

 

125.1
8

9
  

11111.1
9

10
  

066666.1
15

16
  

  

 
8

9  defines the large major second, 
9

10  defines the small major second and 
15

16  defines 

the ideal minor second. Since the diatonic scale is a constant these values can be represented 

algebraically. 
    x = 1.125 

y = 1.1111 

z = 1.066666 

 

 C  x  D  y  E  z  F  x  G  y  A  x  B  z  C 

 

 The basis of this scale is two adjacent tetrachords and thus the x between F and G is 

immutable. The logical grouping of the scale intervallicly is: 

 

xyz x yxz 

 

 Notice the slight difference between the left and the right tetrachords. The intervallic sum 

of each is the same.  

xyz = 1.33333 

yxz = 1.33333 

  

 The Dydimus comma itself is the result x divided by y. 

 

0125.1
111111.1

125.1

9
10

8
9


y

x  

 The difference in the two tetrachords is the result of a shift of the Dydimus comma. This 

shift establishes the key and places the comma in the only points acceptable to the ear. This is the 

logical method of vertically displacing the comma. The major second and the minor third are the 

only two intervals in which the ear will accept the vertical sounding of the comma. The Dydimus 

comma is the only comma acceptable to the ear in vertical structures.  

 In tempered tuning both x and y are equal to 212 )2(  or approximately 1.122460205 instead of 

1.125 or 1.111111. z is equal to 12 2  itself.  It is physically impossible to establish tonality with 
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tempered tuning as tonality is governed by shifts in the various commas and commas do not exist in 

tempered tuning. 
 

THE TRITONAL COMPLEX 
 

Let us examine the values of the diatonic scale as they would exists if generated by F C and G:  

 

F C G 

C = 2 C = 2 C = 2 

z z Z 

B = 1.875 B = 1.875 B = 1.875 

x x y 

A = 1.6666 A = 1.6666 A = 1.6875 

y y x 

G = 1.5 G = 1.5 G = 1.5 

x x x 

F = 1.3333 F = 1.3333 F = 1.3333 

z z z 

E = 1.25 E = 1.25 E = 1.25 

x y y 

D = 1.1111 D = 1.125 D = 1.125 

y x x 

C = 1 C = 1 C = 1 

 

This was arrived at by the following method. If we let F (1.333) be the principal tone then 

all other notes must have the proper relationship with F, i. e., G should be a large major second 

above F and indeed 1.3333 times 1.125 equals 1.5, which is G. The major third above F (1.333 * 

1.25) equals 1.66666, which is the proper major sixth. All intervals work out to be the same as in 

the tonality of C but D. D lies a major sixth above F. The inversion of a major sixth is a minor 

third (
666.1

2 =1.2). D then should lie a minor third below F but 
2.1

3333.1  = 1.111111 and thus the 

value of D is changed. If we use the same method with G we find that every interval is consistent 

with the tonality of C but A, which must lie a large major second above G. If we multiply G or 

1.5 by 1.125 we obtain a value for A of 1.6875. 

In the scale of the tonality of C notice the fact that when we changed the value of A from 

the right based value of 1.6875 to the diatonic value of 1.6666 we altered the fifth 
D

A . Instead of 

1.5, which is the ideal, it is 1.481481 or the perfect fifth reduced by the Dydimus comma (1.0125). 

Perfect intervals are called so because they cannot be changed. For instance, if, in performing a 

string quartet one player approached A and another D they would never sound the fifth as 

1.481481. They would, almost instinctively, shift tonality to the right or to the left. In either case 

the fifth is made pure. Consider the example of the triadic concept of the diatonic scale. Here the 

seven tones are arranged as three adjacent triads. 

 
The tritone lies between the F, the bottom of the first triad and B, the top of the third triad. 

The diatonic scale is not a simple series of seven tones. The musical scale is not a scale of 

measurement but a scale of function and this is a prime example. The diatonic scale is actually a 

tritonal system controlled by the tonality of the center. 
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Consider the three structures intervallicly, grouped by tetrachords: 

 

F yxz x yxz 

C xyz x yxz 

G xyz x xyz 

 

 The ear tolerates the comma (1.0125) when it appears in the major seconds or the minor 

third. The perfect intervals and the major third are kept pure by this switching of the two major 

seconds. Since the difference between them is the Dydimus comma ( y
x   = 1.0125), the comma is 

shifted to a point where it will not interfere. Remember that this comma is a prime overtone 

interval 
80

81  and thus sounds no other differential tone but the fundamental. The diatonic scale 

presupposes the ability to control tuning and change fundamentals. This is something that, until 

recently, has been completely impossible to achieve on keyboard instruments. 

Like so many of man's similar attempts the keyboard arose as an attempt to introduce 

linearity into a non-linear phenomenon. The means now exist that will permit us to keep the 

keyboard in perfect tune. 

Let us sum up the Dydimus comma. Notice that any time an interval was changed from its 

ideal value it was always by the same amount, that amount being 
80

81  or 1.0125. This was the 

shift required to replace the fourth power of three by 5 (80). Meaning no disrespect to Dydimus, 

we will for convenience sake rename this comma, 1.0125, the Diatonic Comma as it is this 

comma, and nothing else that makes the diatonic scale work. Consider again the scale in whole 

numbers: 
24,  27,  30,  32,  36,  40,  45,  48 

or 

3,  27,  15,  1 9,  5,  45,  3 

 

If we arrange these in the same manner as we did the pentatonic and its extension we get: 

 

27 (135) 

9 45 

3 15 

1 5 

  

It is structurally identical to the pentatonic scale and its extensions. It can be thought of as two 

superposed pentatonic scales. 

 
   27  

9   9 45 

3 15  3 15 

1 5    

   

The only difference is that in the diatonic system, 3 becomes the principal tone. To illustrate this, 

the Japanese use this structure in toto (even 135). The music they produce is totally different. 

This is because they consider both the fundamental and the principal tone to be 1. The reciprocal 

nature is not present in Japanese music even though the notes are the same. 

The practice of music adheres to this math completely. 1, 3, 9, 27 and 5 are all considered to 

produce consonance when sounded with the fundamental. 15 (the major seventh) is consider to 
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be 'dissonant', 45 is the devil's tritone itself and was actually once banned by papal decree and 135 

which, as CG, would constitute an augmented octave and thus is considered to be a false relation 

and is simply never used. CG could only be produced by shifting to the tonality of the right, 

making the fundamental tone 3, and the principle tone 9. This, in turn, makes 135 the tritone 

admitting it to the system as a harmonic function. 

The great cornerstone of western harmony, that moves from the tonic to the subdominant, 

to the dominant and then to the tonic again, 

 
C F G C 

I IV V I 

 

is nothing more than moves by fifths, first to the left, then to the right and then back to center. 

This is the function that distinguishes western music from all others and sets the stage for the 

magnificent enharmonic system. 
 

THE AVOIDANCE OF THE TRITONE 
 

The logical extension of the pentatonic and diatonic scales are, actually, the same identical 

structures, the only difference being which note is considered to be the principal tone. In right 

based scales (comprising most of the scales that have ever existed) both the fundamental and the 

principal tones coincide while in the diatonic the principal tone lies a perfect fifth above the 

fundamental.  

Thus, if C=1, the scale represents the right based scale of C and the diatonic scale of G. 

 
27 (135) 

9 45 

3 15 

1 5 

 

 
 

The Right Based scale is the scale used by the Japanese, including the CG. The scale is comprised 

of two superposed tritones, C to FG and G to CG. 
         By filling up the 'empty' spaces in the pentatonic scale we provide a method of moving 

from the lower octave to a higher octave (or vice versa) by steps. The ear does not accept 

anything larger than the large minor second, 1.125 as a step. A minor third is already a jump or a 

skip. 

In the right based scale we notice that the fourth above C is indeed not perfect, nor is it 

affected by an interval so small as a comma. It is the only fourth in the scale that is not perfect. It 

is higher than a perfect fourth by a semitone. In this case, however, the semitone is not the ideal 

of 1.06666 (
15

16 ) but rather it is 1.0546875 (
128

135 ). Thus the interval is called the augmented 

fourth. As with the comma, the augmented fourth can be shifted within the scale itself but it can 

never be eliminated. If we change the FG sharp to FJ l (the proper note in the diatonic scale of C) 
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the fourth that is formed between C and F is perfect, but now the F to B natural forms the 

augmented fourth. 

FG sharp is represent by 45 and comes into the prime octave as 
32

45 = 1.40625. As with all prime 

octave values the value of the note in question also defines the interval itself. 

It is the only time in the scale that three major seconds occur in succession, two large and 

one small thus: 

xyx 

 

 Because of this juxtaposition of three major seconds the interval of the augmented fourth 

is also known as the tritone. It was known in the Middle Ages as 'Diabolicus in musicum'. It was 

once banned by papal decree. It is primarily a harmonic device and in fact, common practice 

harmony could not exist without it. It is avoided in melodic writing in much the same manner as 

the diatonic comma. Now, however when the shift is made to the right or to the left, the diatonic 

scale of each new tonality is now used in each case. If we start with FJ and construct a diatonic 

scale, the fourth becomes BH and the tritone now lies between BH and EJ. Musically, this would be 

a logical move if one were ascending in the diatonic scale of F. 

 

 
As we have seen a shift to the right changes the F to FG. Thus if we were to descend the 

scale: 

 
We know the value of the FG to be 1.40625. BH would lie a perfect fourth above F, which in 

turn lies a perfect fourth above C. Thus in the scale of C, BH would have a value equal to 1.3333
2. 

This gives BH a value of 1.777777. This is precisely the point where modern music theory goes 

astray. Modern theory accepts a BH of 1.8, and this value does not work as a proper value in the 

enharmonic system. 

This value does appear, as we shall see, but not in the diatonic scale of any given tonality. 

If 1.8 is accepted it becomes impossible for the enharmonic system to work. It will be proven that 

the enharmonic scale is an absolute. One, and only one set of values can exist. The prime value 

of the minor seventh is 1.777777, nothing else. BH not only does not appear in the overtone series 

of C but it does not appear in F either. When we shift to the left and make F the principal tone the 

fundamental becomes BH. Similarly, when we move the right and make G the principal tone the 

fundamental is C. 

Another justification for a value of 1.77777 for BH lies in the fact that 1.777777 is the 

inversion of 1.125, the ideal major second. Just as with the perfect fifth we now have two notes 

created by moving the left and to the right by the same ratio. As with the fifth the value to the 
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right or 'above' C lies in the overtone series of C and the value to the left or 'below' does not. C is 

the ninth overtone of BH and D is the ninth overtone of C. This is the key to the reciprocal scale. 

Consider the major second that lies between A and B in the diatonic scale of C. This new BH 
divides the major second (

6666.1
875.1  = 1.125), into two smaller intervals.  

 

6666.1
7777.1  = 1.06666 (

15
16 ) 

 

and similarly 

 

7777.1
875.1  = 1.0546875 (

128
135 ) 

 

The latter is the most remote value of the minor second and is avoided. 

In music certain tones are considered to have 'tendencies'. For instance, in the scale of F, BH is 

said to have a tendency to move to A. Once again the numbers support the practice. The ratio 

between A and BH (
15

16 ) is not only a more basic ratio than the one between BH and BJ (
128

135 ), 

but it is a prime interval. The move by the large minor second (
15

16 = 1.06666) is always the 

preferred move of three possible minor seconds. 135 is CG in the system-generated by C, and thus 

BH to BJ l (1.0546875) would be, in music terminology, a false relation. 

In the move to the right the ratios are the same but they are reversed. FG (1.40625) lies below 

G (1.5) by 1.06666 (
15

16 ) and above F by 1.0546875 (
128

135 ) and again the tendency is for FG to 

move to G. F and FG are false relations. 

We have two new notes and a method of creating new notes, which successfully divide the various 

major seconds. In this manner we will create the chromatic scale. Since the sharps and/or flats that are 

created are in effect substitutes for notes of the original diatonic scale, we can expect the scale to have the 

same characteristics as the diatonic scale, and indeed it does. 

 
THE CHROMATIC SCALE 

 

It takes, in effect, three distinct scales to make it possible to play a diatonic perfectly in 

tune. It is important to realize that while the creation of the scales on the right and on the left do 

add two new tones, the complete set of scales, taken together, is a functional, not a linear scale. 

This tritonal system creates a matrix system and not a nine-note scale, per se. We have nine notes 

representing a seven-note structure. If we list the tones in a linear manner (and there is a practical 

reason to do so) we must format them correctly, that is, as a seven-tone scale. 

 
1,   (1.111, 1.125),    1.25,    1.333,    1.5,   (1.666, 1.6875),    1.875,    2 

 

In dealing with the diatonic comma we are dealing with a very small interval. A note of 

440Hz raised by 1.0125 would be 445.5Hz. Forgetting all physiological and psychological 

interpretations, the answer to the question, 'can the ear hear so small an interval?' is an 

unqualified yes. The hairs on the organ of Corti in the inner ear can detect minute differences in 

pitch, much, much smaller than those created by any of the commas we shall uncover. How the 
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mind interprets the information is something else entirely. The point in question is that the ear 

always hears these differences; it cannot do otherwise. 

The chromatic scale, although comprised of twelve notes, is still functionally a seven-note 

scale, for exactly the same reasons the simple tritonal system is. So-called chromatic notes are 

introduced, not to 'fill up' the spaces created by the major seconds but rather as a logical result of 

changing tonal centers. We have seen that if we move the left (F) and create a diatonic scale with 

F as the principal tone (BH then is the fundamental) we introduce a new note to the system, BH. 
Similarly the move to the right gives us FG. Since these new parallel scales are diatonic scales in 

themselves, they must be treated as tritonal systems, each creating their own alternate tones. 

Even at this elementary level the system starts to grow quite complex. 

We have also seen that this changing of tonal centers can be represented quite easily by 

creating the notes reciprocally. Thus, in this case BH is the musical reciprocal of DJ. 
 

1 * 1.125 = 1.125,          
125.1

2  = 1.77777 

 

We can consider this a move in either direction, right or left by the same ratio. Let us 

examine a much more significant interval, the major third. A major third above the fundamental 

is, of course, 1.25. A major third below is 1.6 (
25.1

2  =1.6). This gives us an AH and, since the 

major third is created by the C above AH,  AH is the fundamental. If the fifth to the left is second to 

the fifth to the right in the hierarchy of intervals, then the major third below the fundamental 

must follow the major third above. In decreasing importance from the generator tone the first 

four notes would now be: 

C  -  G  -  F  -  E -  AH 
 

Because of this, AH is closer to the fundamental than D or A. Perhaps this can be seen more 

clearly in the ratios. 

C = 
1

2  

G = 
2

3  

F = 
3

4  

E = 
4

5  

AH = 
5

8  

 

The next ratio in the order is 
5

6 or the minor third (1.2). The minor third below the 

fundamental (
2.1

2 = 1.6666) already exists in the diatonic scale as A. 1.6666 is equal to 
3

5 and, 

although it is not a prime interval, it must be considered to be the significant version of the 

interval. A minor third above the fundamental would equal 1.2 and give us EH. The fundamental 

of this interval would be AH. Here we have two reciprocal members of the chromatic scale, 

neither of which resides in the overtone series of the principal tone. 

        The next interval in the order would be 1.125, which we already have as D above and BH 
below (

8
9    and 

9
16 ). Next comes 

15
16 = 1.06666, the ideal minor second. This, as with A, lies 
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below the fundamental in its natural position giving us B of 1.875. A move above the fundamental 

by 1.0666 gives us a DH and this raises an interesting question, why do we consider AH, BH and DH to 

be flats and not sharps? Flats naturally resolve to a note a chromatic half step below. It is 

important that this resolution be the ideal minor second. It is also important that this minor 

second be 1.066666. AH resolves to G by 1.0666 (
5.1

6.1 = 1.06666), EH resolves to D by 1.06666 (

125.1
2.1  = 1.0666), BH resolves to A by 1.06666 (

6666.1
7777.1  = 1.06666). Flats are decidedly a left 

based phenomenon. There are no flats contained in the overtone series of C, nor in any tonalities 

that lay to the right of C. 

We now have eleven notes. The final note on our chromatic scale lies right in the middle, 

between F and G. We already have an FG of 1.40625 (
32

45 ). As flats go down, sharps resolve up, 

thus FG resolves to G by 1.06666 (
40625.1

5.1  = 1.06666). This gives us twelve tones but in every 

other case we also produced the reciprocal of each ratio. 

A move to the left of 1.40625 produces a GH of 1.42222. This is definitely a flat as it moves to 

F (
3333.1

4222.1  = 1.06666) by the proper minor second. This makes FG quite unique, as its 

reciprocal is its own enharmonic substitute. Since it appears first we can assume FG to take 

precedent. If we wish to list the chromatic scale as single values, 1.40625 will be used. 

Structurally, as we shall see, it is important to consider them as alternates. 

Since any move to resolution that is other than 1.0666 is a false relation we can see that we 

still have, functionally, a seven-tone scale, just as with the tritonal complex. The chromatically 

scale, if linearized, must be listed so: 
1,   (1.06666,  1.125),   (1.2,1.25),   1.333,   (1.40625,1.4222),  1.5,   (1.6,1.666),   (1.7777, 1.875),   2 

 

THE HEARING PROCESS 

 

 A critical question arises - can an interval so small as the Dydimus comma actually be 

heard? Here we must take care to differentiate between hearing and perception. If the ear is 

presented with a tone of 100Hz it hears 100Hz. If presented with 99Hz it hears 99Hz. If presented 

with an impure interval it hears an impure interval. How the mind perceives this information is 

much more complex. It is influenced primarily by what else is sounding with it and to a lesser 

degree by the experience of the performer or the listener. Tests have shown that in an interval so 

as basic as the octave the ear can easily detect an error of 1Hz. 

 Consider the tempered major third, 98941.25992104)3(
412  . This is larger than a true 

major third by 1.007937. 

007937.1

4
5

)2(
412

  

 

 More than any other tempered interval it is the out of tune quality of the third that gives 

the tempered scale its unpleasant wobbly effect. 1.007937 is a smaller interval than any of the 

functional commas found in the enharmonic system but it is still easily discerned as it produces a 

differential equally disturbing to the system. The Dydimus comma, being a prime interval (
80

81 ) 

is much more benign to the system than any of the discrepancies that exist between the tempered 

and just tuned scales in that it creates, differentially, only the fundamental and thus does not beat. 
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  In an article by Frederick Saunders published by Scientific American in 1948 entitled 

Physics and Music we find a clear example of the difficulties that arise when those who are not 

professional musicians attempt to describe the nature of musical physics. Music is as rigorous 

and demanding a profession as exists and, like most professions, is rife with subtleties and 

intricacies that the layman seldom understands and of which he is often unaware. Such is the 

case of Mr. Saunders offering. 

 Early in the article Mr. Saunders defines the frequency of middle C as being "about 260". 

That is exactly like saying that the freezing point of water is "about 30ºF". If one were to write 

about the nature of ice, indeed the physics of ice, one would most certainly state that the freezing 

point of water is 32Fº, exactly. Then the argument makes sense. The same is true with music. 

 The absolute pitch of middle C, if we tune to A of 440Hz, could have any of four different 

pitches, depending upon the generating tonality. The middle C in a tempered scale is irrational 

thus we cannot express it as an integer. It would have a value close to 261.6255Hz. 

 In a C-major scale, if C is the root, the value of middle C will be exactly 264Hz (The 

reason for this value will be explained in the course of this paper). On the other hand when a 

violist tunes his instrument he will first tune the highest pitched string to A of 440Hz. He will then 

tune the next lower string to a D of 293.3333Hz then the next lower string to a G of 195.5555Hz and 

finally the lowest string to a C of 130.3794Hz.  

 This is the lower octave of a middle C of 260.740740740Hz, which is 264 divided by the 

Dydimus comma. 

740740740.260
0125.1

264
  

  

Nothing is approximate in music. The error induced when we create the gamut by successive 

tuning of perfect fifths is very often described as being ‘about’ 2% higher than the required 
7

2  

(128) when the actual difference is 129.746337890625, exactly 129.746337890625, no more, no less. 

The fact that these approximations are used at all comes from the type of mathematics that is 

currently used to analyze and describe music. 

 This could be easily overlooked but for the fact that Mr. Saunders continues.  He 

expresses the common argument that the various keys cannot have ‘character’ because of the 

nature of tempered tuning. However the notion of G and D being bright keys came from string 

music because these keys contain so many open strings. The thought that D was a good ‘military 

key’ came from the fact that military trumpets were often tuned to D. Also ‘just’ tuning often 

favored certain keys making the more remote keys have decidedly different qualities. Mr. 

Saunders was, as with most, thinking in terms of the tempered scale. 

 Mr. Saunders conveys the idea that it is the motion of the air that creates the sound. This 

paper will show that this concept is wrong. He states that in the clarinet and the oboe it is the 

lowest tone only whose sound issues from the end of the instrument. If this were true then why 

would a player use a mute (and both oboe and clarinet players do) if it only affected the lowest 

tone? Also why would the clarinet have a bell if it only affected the fundamental? This is 

actually a good example that shows that the movement of the air does not create the sound wave. 

 In his defense of tempered tuning he states that no one seems to mind when a piano and a 

violin play together, even though their tunings are different. Mr. Saunders should have talked to 

a violinist before he made this statement. All competent violinists (and most trained singers) are 

painfully aware of the conflicts that arise when the piano is accompanying. String quartets are 

universally bothered by the addition of a piano. Mr. Saunders takes the condescending view that 

is so often taken by ‘scientists’ when they are sure they are right and the uniformed cannot 

possibly have a significant argument. In all of these arguments Mr. Saunders is wrong, 
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completely wrong. 

 In another statement he states that no one really hears the differences between tempered 

tuning and natural tuning. This is the position that is often assumed in contemporary thinking. 

We grow up hearing this scale and thus we cannot tell the difference is their position, or so it is 

thought. If it were possible for an orchestra or a string quartet to play with absolute tempered 

tuning we would soon find out how well the ‘average’ person really hears. 

 This is not meant to be an attack on Mr. Saunders as his place in acoustical thinking is 

well established. I use his article because he is considered to be a major authority, 

 Studies have shown that when a so-called pure tone (a sine wave) is offered to the ear the 

ear actually hears four harmonics. Mr. Saunders supposes that it is defect in the ear that causes 

these ‘false’ harmonics. Since one cannot hear a sine wave unless it is fed to the airborne carrier 

via a speaker it might be better assumed that it is the speaker that adds the ‘extra’ harmonics. 

 This, plus the Wallace Sabine’s notions of hall acoustics will be taken up in a later paper. 

 
THE TRITONAL CHROMATIC SYSTEM 

 AH, which lies a major third below C, also forms a perfect fifth with EH )5.1
8.

2.1(   (.8 is 

the lower octave of 1.6) AH forms a perfect fourth with DH )333333.1
8.

06666.1(  . It lies a minor 

third above F )2.1
33333.1

6.1(   and a small major second below BH )11111111.1
6.1

777777.1(  . The 

only problem occurs in the fifth BH above EH. This fifth )481481481.1
2.1

777777.1(  is the perfect 

fifth reduced by the diatonic comma just as was seen in the diatonic scale between A and D. 

The following table shows the chromatic scale as it would exists in the three tonalities,  

F – C – G, just with the diatonic. 
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Tonality in 

F 
 

Tonality in 

C 
 

Tonality in 

G 

C 2.0  C 2.0  C 2.0 

B 1.875  B 1.875  B 1.875 

BH 1.77777  BH 1.77777  BH 1.8 

A 1.66666  A 1.66666  A 1.6875 

AH 1.6  AH 1.6  AH 1.6 

G 1.5  G 1.5  G 1.5 

GH 1.42222  FG 1.40625  FG 1.40625 

F 1.33333  F 1.33333  F 1.33333 

E 1.25  E 1.25  E 1.25 

EH 1.185185  EH 1.2  EH 1.2 

D 1.11111  D 1.125  D 1.125 

DH 1.066666  DH 1.066666  CG 1.0546875 

C 1.0  C 1.0  C 1.0 

  

 The impure fifth between EH and BH is corrected by shifts to the right or left, just as with 

the diatonic. While changes in the diatonic structure produce only pitch variances of the same 

note, the chromatic structure produces enharmonic changes wherein sharps become flats and vice 

versa. The GH in the F column becomes FG in the C column while the DH of the C column becomes 

CG of the G column. 

 This establishes the rather interesting fact that sharps are lower in pitch than flats. A 

musical scale is a scale of function. Sharps and flats exist because of where they are going and 

not necessarily where they are. This establishes the functional nature of a musical scale. The 

isometric tempered scale obscures the fact that the twelve-tone scale is diatonic in nature. The 

twelve-tone scale is a linear approximation and is totally irrational. There is no twelfth root of 

two. 

The intervallic structure of the chromatic scale shows three intervals which we shall label 

a, b, and c. 

)
15

16
(066666.1a  

)
128

135
(054678.1b  

)
24

25
(04166666.1c  
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Tonality in F Tonality in C Tonality in G 

C 2.0 C 2.0 C 2.0 

 a  A  a 

B 1.875 B 1.875 B 1.875 

 b  B  c 

BH 1.77777 BH 1.77777 BH 1.8 

 a  A  a 

A 1.66666 A 1.66666 A 1.6875 

 c  C  b 

AH 1.6 AH 1.6 AH 1.6 

 a  A  a 

G 1.5 G 1.5 G 1.5 

 b  A  a 

GH 1.42222 FG 1.40625 FG 1.40625 

 a  B  b 

F 1.33333 F 1.33333 F 1.33333 

 a  A  a 

E 1.25 E 1.25 E 1.25 

 b  C  c 

EH 1.185185 EH 1.2 EH 1.2 

 a  A  a 

D 1.11111 D 1.125 D 1.125 

 c  B  a 

DH 1.066666 DH 1.066666 CG 1.0546875 

 a  A  b 

C 1.0 C 1.0 C 1.0 

 

1.041666 )
24

25(  is the third form of the minor second.  

If we group these new intervals as tetrachords as with the xyz’s (xyz x yxz) we get the 

following. 

 

(ab)   (ac)   (a)     (ba)    (ac)   (ab)   (a) 

x       y       z         x        y        x       z 

The scale begins to approach complete symmetry. 

 

ababc ba acaba 

  

Grouping as with the triumvirate xyz’s shows. 
 

F   acaba ab acaba 

C  abaca ba acaba 

G  baaca ba abaca 
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In the middle structure, C, the tetrachords (which consist of five representing three), are 

symmetrical.  The enharmonic scale, as we shall discover, is both symmetrical and reciprocal. 

The following example illustrates the proper makeup of the chromatic, tritonal system. 

 

ac ab a ab ac ab a 

y x z x y x z 

       

ab ac a ba ac ab a 

x y z x y x z 

       

ba ac a ba ab ac a 

x y z x x y z 

 

In common practice harmony, ‘a’ is the only valid half step. There is only one a in every 

half step of the diatonic scale. Singing or playing a chromatic scale in the correct tuning for a 

given generator is a very difficult thing to accomplish, while the diatonic is relatively easy. The 

chromatic scale did not arise as a melodic scale. It arose to allow proper tonal modifications to 

the diatonic, that is, to allow the diatonic scale to change to fit a changing fundamental. It came 

into being purely as a functional scale. Melodic use is usually ornamental although the art 

became sufficiently sophisticated as to allow the scale a genuine melodic use. Consider the 

‘Flight of the Bumblebee’. 

Our calligraphy greatly influences the way we think about music. Invariably we think of 

music as moving from left to right (as with text) or bottom to top. Ask a musician to ‘spell’ a 

major triad and result will be C E G. Ask a person to sing a scale and they will virtually always 

start with the lowest note, do re mi, etc. Structurally it is just as valid to progress from left to 

right, or top to bottom, as this is basically what we do when we invert an interval, a chord or a 

scale.  

 

An inversion of the diatonic scale illustrates the reciprocal nature of scale construction. 

 

Ascending (ab) (ac)  a  (ba)  (ac) (ab)  a 

 Descending      a   (ba) (ca)    (ab)      a   (ca)  (ba) 
 

ba 

abaca       acaba 

ab 

 

Except for the middle complex, the scales are identical. In a scale of C, the middle 

complex would be FG ascending and GH descending. This reciprocity will become clearer as we 

develop the scale numerically.  

The chromatic triumvirate of scales can also be represented by xyz’s. 
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z
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bza  ,,  

z
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x
z

z

y
z

z

x
zz

z

x
z

z

y
z )()()()()(  

aabacabaabac )()()()()(  

 

z
z

x
z

z

y
zz

z

x
z

z

y
z

z

x
z )()()()()(  

aabacbaaacab )()()()()(  

 

z
z

y
z

z

x
zz

z

x
z

z

y
zz

z

x
)()()()()(  

aacabbaaacba )()()()()(  

 

THE CHROMATIC COMMA 

 

The term, comma, comes from the Greek κόηηα which means an interval. In music this 

has come to mean a small interval. We shall discover several such commas. Again it must be 

stressed that they do not measure distance. They measure rational proportions and thus, as with 

any interval they are ratios. The encyclopedia Britannica lists two commas, both of which we 

have explored, the Pythagorean and the Dydimus. This encyclopedia states that the Pythagorean 

comma is higher than the mathematical ideal by 24 cents and that the just tuned third is lower 

than the Pythagorean by 22 cents. 

 The cent is the basic unit of the tonometric system. More than anything else, this 

tonometric system demonstrates the illogic of linear measurement in the exponential system of 

music. The tonometric system takes the tempered semitone, equal to 12 2 , and further divides it 

100 equal parts, each part being equal to one cent. It sounds impressive and very scientific but it 

measures absolutely nothing. Music is described in its entirety by very simple ratios. There are 

no exceptions. A look at the mathematical notion of the tonometric system illustrates why it 

cannot be effective. 

932296792575795065548591.000577782
10012   

 I let result run to thirty-one places to illustrate a point. The modern organ is not 

particularly satisfactory. The same is true for the synthesizer. Neither has, in any sense, replaced 

the orchestra or, for that matter any group of acoustic instruments. The reason for this 

unpleasantness is simple, they are out of tune. All arguments for tempered tuning and a 

measurement system based upon it are no longer valid; they have been superseded by the 

computer. The tonometric system is explored in greater detail in Part III of these papers. 

 In the tritonal chart in the preceding section we can see that as we move from the tonality  

of F to that of C, the GH of F becomes the FG of C. Similarly the DH of C becomes CG when the 

 shift is to G. This is the enharmonic shift but we are not ready to develop the enharmonic scale. 

 The comma is rational but lies very high in the series. 

 

4691..1.01135802
2025

2048

40625.1

4222222.1
  
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Superpositioning would seem to be the most logical and efficient method of creating the 

structure of music. The most significant series is, of course, the octave series, the power series of 

2. Since 1 = 2 every member of the series is equal to every other member and all are equal to the 

fundamental. This definition is such that we can state that any other power series can only exist 

to the extent that it does not conflict with the power series of 2. 

 The scale so far developed defines the pentatonic scale and its logical extension, the 

diatonic.  
(81) (405)  

27 135  

9 45  

3 15  

1 5 (25) 

 

The series rises by powers of 3 until it reaches 81. At that point the more acoustically 

acceptable 80 is substituted. The second column again rises by multiples of the powers of 3 until 

405 is reached. The substitution occurs again, just as with the first column and the new column 

begins with 25. 

 
4

3  4
3*5   

3
3 3

3*5   

3
2 

5 * 3
2
  

3
1 

5 * 3
1
  

3
0 

5 * 3
0
 02

3*5  

  

 We have observed the comma between 81 )3(
4  and 80 )2*5(

3  is 1.0125, the diatonic 

comma. This simplifies the system, bringing into system the significant major third )25.1
4

5(  . 

This introduces the altered fifth. 

481481481.1
27

40

80
81

2
3

  

  

If we continue the power series of 3 in the 5 column, the value above 135 is 405. 405 has the same 

relationship with 25 that 81 has with 5 and again introduces the diatonic comma. 405 in the 5 
column is already affected by the diatonic comma and thus it is so affected again. The ratio of 

the number in the power series of 3 and the adjusted number in the subsequent column is 

2.16
5

81  . 405 then is the adjusted value of 6561 )3(
8 . 

405
2.16

6561

5
81

3
8

  

 We must continue this expansion until the power series of 3 creates a number that 

conflicts with the octave. 

  This occurs at 5314413
12  . If we expand the previous example we see a matrix pattern 

developing created by the power series of 3 in vertical and the power series of 5 on the 

horizontal. 
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(531441) (524880) (581400) (512000) 

177146    

59049    

19683    

(6561) (32805) (32400) (32000) 

2187    

729    

243    

(81) (405) (2025) (2000) 

27 135 675  

9 45 225  

3 15 75  

1 5 25 125 

 

 

 531441)(3
12  comes very close to 524288)(2

19 . The difference is equal to the Pythagorean 

comma. 

547705078121.01364326
524288

531441

2

3
19

12

  

 This is a graphical way of observing the comma caused by consecutive tuning in fifths. 

We see a matrix developing and this matrix will prove to be the key to virtually all acoustic 

phenomena. If we can superpose perfect fifths to generate scale members why not major thirds.  

The horizontal rows describe tuning in thirds or the power series of 5. If C = 1 then 5 is E, a major 

third above C, 25 would be GG, a major third above E. 25 forms an interval known as an 

augmented fifth, formed by two successive major thirds.  

 
 

This produces a fifth augmented by the small minor second  

0416666.1
24

25  . 

 

5625.1
48

75

24

25
*

2

3
  

 

 1, 5, 25 form the augmented triad. If we superpose a third major third to the structure we 

get 125. This would be BG. This interval would be 1.953125
64

125  .  

 
 

 Because it lies so close to the octave C, 024.1
1.953125

2  , it is forbidden in common 

practice harmony, which does not permit alteration of the octave. It does however provide the 

value of the Chromatic comma. Just as with BG, GG (1.5625) is equally close to AH (1.6). This 

produces the same comma, 024.1
5625.1

6.1  . This is the comma that differentiates sharps and 

flats.  
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We can also see an interval between EJ and AH which, on the keyboard, looks like a third 

but actually is a diminished fourth. 

 

28.1
25.1

6.1
  

 

 1.28 is higher than the major third, 1.25 by the Chromatic comma, 1.024 024.1
125

128  . In 

the chromatic scale 1.28 would be FH (EJ would, in this case be consider the sharp member) and 

the comma fulfils its function. To illustrate how everything fits, this FH lies a major third below 

AH, 25.1
28.1

6.1  . The problems of a linear keyboard are exemplified here as the interval looks 

like a third on the keyboard but like a fourth in the calligraphy. 

 Not only does 5314413
12   approach the octave 5242882

19   but each successive 

adjustment (32805, 2025, 125) does so as well. 32805 comes closest, missing the octave 327682
15   

by 1.001129150390625. 

03906251.00112915
32768

32805

2

3*5
15

8

  

  

This comma, although valid and rational, does not enter into any significant musical examples. 

2025 forms, with 7
2 , the enharmonic comma. 

 

46913580241.01135802
2025

2048

3*25

2
4

7

  

  

We discovered this comma lying between FG and GH. Finally, 125 approaches 128 by the 

Chromatic comma 024.1
125

128  .  

This gives us all of the commas that appear in the system. It also gives us a better feeling 

for what actually establishes tonality.  

The following example illustrates this. 

 

 
 

In tempered tuning these triangles would be equilateral.  

 

 

 

 

1 (2)

1.28 1.6 1.25 1.5625

1 (2)

1.6

1 (2)

1.25
Tonality

Tonality

Tonality
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The values would be consistent with each ’tonality’ and would be 

 

2)2(

19681991.58740105)2(

46913581.01135802)2(

1)2(

1212

812

412

012

 

  

 A calligraphic example of the triangles would like this. 

 

Tonality in FH 

 

Tonality in AH 

 

 
 

Tonality in C 

 

Augmented structures are more complex than we need to deal with in this discussion. We 

will use a scale construction that best illustrates the case. 

 

FH  xzz xy xy 

AH  xy xzz xy 

C   xy xy xzz 

 

The tonality is always to the immediate right of xzz. The augmented triad is usually 

associated with the whole tone scale but this example clearly illustrates the fact that the whole 

tone scale is a musical impossibility. A whole tone scale would be some version of 

 

xy xy xy 

 

This would produce the BG that we saw in the power series of 5, in fact xy is 5(1.25) and 

thus BG could be written as 1255
3   and of course 1.953125

64
125   which is BG. We can also 

combine the x's and y's.  An algebraic approach is used simply to manipulate the intervals. As 

we already have the values of x, y and z we do not actually solve for anything. Thus 

1.953125
33  yxxyxyxy . Notice also that the inversion of BG (1.953125) produces the chromatic 

comma which, in the scale of C=1 would be DHH. 
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024.1
1.953125

2
  

 

There is no combination of x's and y's that will equal 2. One of the xy structures must 

change to reach the octave (2). Since the diatonic scale is xyz x yxz it can be expressed as 

2
223 zyx . This version will prove to be very useful. Thus we find the new intervallic structure. 

For this we will remove the final y in the xy xy xy structure and replace it with xz
2
. 

 

2

23

223

z
yx

zyx
  

  

28.1
2 xz  and forms the diminished fourth in music terminology. 771.13777777

2 z  which, in the 

scale of C=1 would be EHH and the interval described by 2
xz  is the diminished third. Both the 

augmented triad and the whole tone scale are quite different than those defined by the tempered 

scale. 

 The diatonic comma is formed by the difference between the two major seconds 

0125.1
111111.1

25.1 
y

x . The chromatic comma is formed by the difference between the 

diminished fourth (which is more properly written as zxz) and the major third 

024.1
25.1

28.1 
xy

zxz . We shall discover that in the circle of twelve fifths the diatonic comma 

reduces the structure three times 1.0379707))(
3 

y
x  and the chromatic comma increases it once 

and this in turn creates the enharmonic comma. 

 

41.01135802
1.024

1.0379707
)(

2

3



y
z

y
x

 

 The enharmonic comma can also be written as  41.01135802
2


x

z . Both the chromatic 

and the enharmonic commas change sharps into flats. The enharmonic shift will become clearer 

as we develop the complete enharmonic scale. 

 

THE CIRCLE OF FIFTHS 

 

 We have previously observed the musical trinity, that is, a note (C) with a perfect fifth on 

either side. 
F  C  G 

 

 While the principal tone is C the tonality is, of course, F and the smallest digital 

representation is 1  3  9. We can consider either F or G as centers of their own trinities, BH  F  C, 

and C  G  D. The C's are common to both and thus we have extended the initial structure, F  C  G, 

by a fifth in either direction. 

 

BH F C G E 

1 3 9 27 5(81) 
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 C remains the principal tone as we shift the fundamental to the right. Each new pair is a 

reciprocal pair, thus 2 divided by a value on the right produces the reciprocal value on the left.  

D
C  = BH )777777.1

125.1
2(  . If we continue to add pairs we will generate all of the notes of the  

chromatic scale and eventually reach the enharmonic pair FG and GH. 
 

GH    DH    AH    EH    BH    F    C    G     D    A    E    B    FG 
 

Following the logic so far set forth, GH is the fundamental and C the principal tone. Once 

again we have a chromatic series formed by tuning in fifths, however, in this instance we have 

observed the diatonic comma and thus the octave error is between GH and FG. We might call this 

the enharmonic octave. The difference between GH and FG is the enharmonic comma  

 

1.01135802
40625.1

4222222.1
  

 

The inversion would produce the diminished octave. 

 

2048

4050
251.97753906

01135802.1

2
  

 

To better understand this we shall arrange the structure in the medieval style, a circle. 

 

 
 

 The value at the bottom is FG if the progression is to the right and GH if the progression is 

to the left. The values of this circle are an absolute. No other values of the circle of fifths will 

work in the construction of an enharmonic scale.  

Nine of the fifths are perfect and three are not. If the intervals are defined as fifths the 

move would be to the right. If the move is to the right the B, five moves down, moves to FG 
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whereas if the move is to the left the fifth move, DH, is to GH. If we continue to move to right FG 
normally would move to CG, and, since the comma would appear here the CG would be 1.0416666. 

 

1.05468755.1*40625.1   

 

041666666.1
1.0125

1.0546875
  

 

The actual value is the DH that is the reciprocal of B, 066666.1
875.1

2  . FG to DH produces a 

slightly augmented fifth. 

701.51703703
40625.1

066666.1*2
  

 

This, with the perfect fifth, produces the enharmonic comma. 

 

4691.01135802
5.1

51037037.1
  

 

The comma can also be seen between GH and FG.   
 

4691.01135802
40625.1

4222222222.1
  

 

In the circle we observe two fifths that are reduced by the diatonic comma and one that is 
increased by the enharmonic comma. The diminished fifth lies quite low in the series 

11.48148148
0125.1

5.1
27

40  , 

 

while the augmented fifth lies quite high :  

 

                               70371.51703703
675

102441.01135802*5.1  . 

 

If we start at C and move in either direction we will, after twelve such moves, return 

again to C. It will, of course, be in a different octave depending upon the direction chosen but, 

since 1=2, it does not alter the argument. 

Counting both FG and GH, there are six notes to right and six to the left. The values 

represent the true chromatic scale and the structure is both reciprocal and symmetrical. 2, divided 

by any value on the right will produce its positional counterpart on the left. Lines in the diagram 

connect these reciprocal values.  

125.1
777777.1

2
777777.1

125.1

2
  

25.1
6.1

2
6.1

25.1

2
  

 

Etc. 
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We can consider the structure to be a series of twelve fifths from GH to FG, or six fifths in 

either direction from C. The concept is not unlike that of signed and unsigned numbers. 

C would be the principal tone but GH would be the fundamental.  

Let us stretch the circle back into a straight line and add the power series of three while 

observing all of the proper commas. 

 

GH DH AH EH  BH F C G D  A E B FG 

1 3 9 27  5 15 45 135 405  75 225 675 2025 

 

 The diatonic commas are marked with . This comma must be introduced after BH and before D 

to maintain symmetry. In actual practice the commas would be avoided by shifts in the various 

tonal trinities. 

45 is the tritone )40625.1
32

45(  . 2025 is 2
45  and thus 2025 and 45 form another tritone.  

The structure that allows the circle of fifths is formed by superposed tritones. It misses 

the octave by the enharmonic comma. 

4691.01135802
40625.1

2
2
  

 

The numbers themselves form an extension of the now familiar matrix pattern. For C=45 

the structure is. 

 405 2025    D FG 

27 135 675   EH G B 

9 45 225   AH C E 

3 15 75   DH F A 

1 5    GH BH  

 

If we express these values in the octave 
1

2 we can observe the following decimal 

version. 
 1.125 1.40625 

1.2 1.5 1.875 

1.6 1.0 1.25 

1.066666 1.333333 1.666666 

1.422222 1.777777  

 

This forms a very practical method of listing the values of the circle of fifths. We can 

now dispense with the circle and list right and left members in columns. 
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C 1.0 1.0 C 

F 1.333333 1.5 G 

BH 1.777777 1.125 D 

    

EH 1.2 1.666666 A 

AH 1.6 1.25 E 

DH 1.066666 1.875 B 

GH 1.422222 1.40625 FG 

 

If we multiply each value of this structure by the fifth octave of 45 )14402*45(
5   we 

achieve the following. 

 
1440 1440     

1920 2160     

2560 1620     

    1620 2025 

1728 2400  1728 2160 2700 

2304 1800  2304 1440 1800 

1536 2700  1536 1920 2400 

2048 2025  2048 2560  

Since the chromatic scale is, as with the diatonic, a tritonal system we must allow for this 

in the matrix. This is accomplished simply by letting the principal tone of the center tonality be 

equal to 135 instead of 45. This extends the matrix vertically from 4
3  to 6

3 . 

 
 3645 18225 

243 1215 6075 

81 405 2025 

27 135 675 

9 45 225 

3 15 75 

1 5  

 

THE ENHARMONIC SCALE 

 

Webster's New Collegiate Dictionary defines 'enharmonic' thus: of, relating to, or being 

notes that are written differently but sound the same. This definition is, of course, wrong. Only in 

a tempered system, which is hypothetical, would AH and GG be the same. That such a definition 

should appear in this dictionary supports the idea that the tempered scale has so invaded musical 

thinking that we have to a significant degree lost sight of what music actually is. 

In a tuned system AH and GG do not sound the same. They differ by the interval of 1.024. 

This chromatic comma is a functional comma is necessary to keep the system pure. It is only in 

this manner that music can posses the synergistic quality that makes music so magical. 

In the chromatic trinity we see four notes wherein two different values represent the same 

note. D (1.125, 1.111111),  EH (1.185185, 1.2),  A (1.666666, 1.6875) and  BH (1.777777, 1.8). These are true 

enharmonic changes and in fact, define the term. 
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The chromatic scale is made up of thirteen notes. While FG and GH are never sounded 

together they must both be included in the system. To allow for the corrections that are necessary 

in vertical harmony we developed the tritonal system, producing a scale of eighteen notes. By 

expanding the trinity we developed the circle of fifths consisting of thirteen tonalities. We must 

now develop the chromatic scale for each of these tonalities. Let us return one last time to the 

circle for our example. For simplicity we will define the circle as columns. 

This time we will rotate the circle one tonality to the left and one to the right. 

 
                                 Rotation left                                                            Rotation right 

F C G 

1.333333 1.333333 1.0 1.0 1.5 1.5 

1.777777 1.0 1.333333 1.5 1.0 1.125 

1.185185 1.5 1.777777 1.125 1.333333 1.6875 

      

1.6 1.111111 1.2 1.666666 1.8 1.25 

1.066666 1.666666 1.6 1.25 1.2 1.875 

1.422222 1.25 1.066666 1.875 1.6 1.40625 

1.8984375 1.875 1.422222 1.40625 1.066666 1.0546875 

      

  

If we rotate the circles, keeping the commas constant, we bring the new tonality to the top 

of the circle. As the various tones pass the commas their values change and the result is the 

chromatic scale of the initial top value. If we continue the rotate the circles until both FG and GH 

are brought to the top we will create the complete enharmonic scale. 

We progress in these structures by moving the desired tonality to the top of the wheel. 

Thus when we move to the right the structure moves to the left and vice versa.  

It is important to remember, when speaking of music, that the term 'motion' is an 

abstraction. Music is a succession of various pitches, nothing more, nothing less. 

The complete version of the structure is necessary, as the structure is capable of moving 

in either direction. As with much of music, this structure is defined by where it is going. 

The following charts illustrate the complete progression, first to the right and then to the 

left. Each tonality is shown in its complete version. This produces the complete structure for 

every tonality. 
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PROGRESSION TO THE RIGHT 

C  G 

C 1.0 1.0 C  G 1.5 1.5 G 

F 1.333333 1.5 G  C 1.0 1.125 D 

BH 1.777777 1.125 D  F 1.333333 1.6875 A 

         

EH 1.2 1.666666 A  BH 1.8 1.25 E 

AH 1.6 1.25 E  EH 1.2 1.875 B 

DH 1.066666 1.875 B  AH 1.6 1.40625 FG 

GH 1.422222 1.40625 FG  DH 1.066666 1.054687 CG 

D  A 

D 1.125 1.125 D  A 1.666666 1.666666 A 

G 1.5 1.6875 A  D 1.111111 1.25 E 

C 1.0 1.265625 E  G 1.481481 1.875 B 

         

F 1.35 1.875 B  C 1.0 1.388888 FG 

BH 1.8 1.40625 FG  F 1.333333 1.041666 CG 

EH 1.2 1.054687 CG  BH 1.777777 1.5625 GG 
AH 1.6 1.582031 GG  EH 1.185185 1.171875 DG 

E  B 

E 1.25 1.25 E  B 1.875 1.875 B 

A 1.666666 1.875 B  E 1.25 1.40625 FG 

D 1.111111 1.40625 FG  A 1.666666 1.054687 CG 

         

G 1.5 1.041666 CG  D 1.125 1,5625 GG 
C 1.0 1.5625 GG  G 1.5 1.171875 DG 

F 1.333333 1.171875 DG  C 1.0 1.757812 AG 

BH 1.777777 1.757812 AG  F 1.333333 1.318393 EG 
FG  GH 

FG 1.40625 1.40625 FG  GH 1.422222 1.422222 GH 

B 1.875 1.054687 CG  CH 1.896296 1.066666 DH 

E 1.25 1.528031 GG  FH 1.264197 1.6 AH 

         

A 1.6875 1.171875 DG  BHH 1.706666 1.185185 EH 

D 1.125 1.757812 AG  EHH 1.137777 1.777777 BH 

G 1.5 1.318393 EG  AHH 1.517037 1.333333 F 

C 1.0 
(1.0) 

(1.9775) 
C (BG) 

 
 C (DHH)  1.0 

1.011358 
1.0 C 
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PROGRESSION TO THE LEFT 

 F  C 

F 1.333333 1.333333 F  C 1.0 1.0 C 

BH 1.777777 1.0 C  F 1.333333 1.5 G 

EH 1.185185 1.5 G  BH 1.777777 1.125 D 

         

AH 1.6 1.111111 D  EH 1.2 1.666666 A 

DH 1.066666 1.666666 A  AH 1.6 1.25 E 

GH 1.422222 1.25 E  DH 1.066666 1.875 B 

CH 1.896296 1.875 B  GH 1.422222 1.40625 FG 

EH  BH 

EH 1.2 1.2 EH  BH 1.777777 1.777777 BH 

AH 1.6 1.8 BH  EH 1.185185 1.333333 F 

DH 1.066666 1.35 F  AH 1.580246 1.0 C 

         

GH 1.44 1.0 C      

CH 1.92 1.5 G  GH 1.422222 1.111111 D 

FH 1.28 1.125 D  CH 1.896296 1.666666 A 

BHH 1.706666 1.6875 A  FH 1.264197 1.25 E 

DH  AH 

DH 1.066666 1.066666 DH  AH 1.6 1.6 AH 

GH 1.422222 1.6 AH  DH 1.066666 1.2 EH 

CH 1.896296 1.2 EH  GH 1.422222 1.8 BH 

         

FH 1.28 1.777777 BH  CH 1.92 1.333333 F 

BHH 1.706666 1.333333 F  FH 1.28 1.0 C 

EHH 1.377777 1.0 C  BHH 1.706666 1.5 G 

AHH 1.517037 1.5 G  EHH 1.137777 1.125 D 

FG  GH 

FG 1.40625 1.40625 FG  GH 1.422222 1.422222 GH 

B 1.875 1.054687 CG  CH 1.896296 1.066666 DH 

E 1.25 1.528031 GG  FH 1.264197 1.6 AH 

         

A 1.6875 1.171875 DG  BHH 1.706666 1.185185 EH 

D 1.125 1.757812 AG  EHH 1.137777 1.777777 BH 

G 1.5 1.318393 EG  AHH 1.517037 1.333333 F 

C 1.0 1.0(1.97) C (BG)  C(DHH) 1.0(1.01) 1.0 C 



 56 

 No matter in which direction we move, right or left, the principal tone  (1.0) is only three 

steps from crossing the comma. We must be careful to differentiate between the principal tone 

and the fundamental. The fundamental generates the tones of the structure while the principal 

tone defines the tonality. The fundamental of a diatonic scale in the tonality of C is F. The 

fundamental of a chromatic scale in the tonality of C is GH. The tonality is established by holding 

the octave of the tonality true. Thus, if the tonality is C=1.0 then the octave 
0.1

0.2  cannot be 

altered. To do so would change the tonality. 

 The solution is simple. We can observe that the tones of the chromatic scale and the 

tonalities of the circle of fifths are identical. The circle of fifths then is chromatic scale of 

chromatic scales. We can expect it to behave in exactly the same manner. Since the diatonic 

comma appears after three moves in either direction in the chromatic scale (laid out in fifths) we 

can expect the circle to do the same. In the progression to the right the entire system of D is 

divided by the diatonic comma (1.0125) before the wheel is rotated. When the shift is made and 
the structure is rotated, the tonality (which, without the comma would be .987654321) would be 

multiplied by 1.0125 and would be restored to the correct value of 1.0. The same thing would 

happen to the B (1.875) in the opposite column. It would be reduced to 1.851851 and then 

multiplied by 1.0125 to return it to 1.875. Exactly the opposite happens when the move is to the 

left, between BH and EH. 
 These charts provide a better understanding of the particular nature of musical 

reciprocity. The square of the number at the top of any complex when divided by any number in 

one column will produce the correct opposite value, adjusting for the octave. Assuming D is at 

the top of the circle we can observe: 

675.
875.1

265625.1

875.1

125.1
2

  

 
35.12*675.   

  Except for the placement of the commas, the FG structure would be the exact 

reverse of the C structure. Numerically it would appear that the comma comes one step early in 

the C structure, however, it must do this so as to keep the reciprocal triad (F A C) pure. In the 

structure of FG we have the best of both worlds. The reciprocal triad 

 

FG 1.40625 45 

DG 1.171875 75 

B 1.875 15 

 

is held pure within the structure while the structure itself gives us the familiar modified power 

series of 3. 
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If we allow 45 to be the principal tone the system will admit a BG of 1.97753906. This gives 

us the chromatic series as we developed it earlier. 

 

FG 1.40625 1.40625 FG  45 45 

B 1.875 1.05468 CG  15 135 

E 1.25 1.58203 GG  5 405 

       

A 1.6875 1.17187 DG  27 75 

D 1.125 1.75187 AG  9 225 

G 1.5 1.31835 EG  3 675 

C 1.0 1.97753 BG  1 2025 

 

These are the numbers that appear in the matrix of the chromatic scale. When FG is the 

principal tone the fundamental is C. 

 

 405 2025   GG BG 
27 135 675  A CG EG 
9 45 225  D FG AG 
3 15 75  G B A 

1 5   C E  

   

 In the more familiar structure with C as the principal tone the fundamental is GH. 
 

 405 2025   D FG 

27 135 675  EH G B 

9 45 225  AH C E 

3 15 75  DH F A 

1 5   GH BH  

  

 Another method of developing the values of the circle of fifths is to multiply the basic 

values of the chromatic scale of C by each individual value, DH, D, EH, etc. The following charts 

illustrate this procedure, first to the right and then to the left. Included are the values represented 

as multiples of xyz. It must be remembered that just as xy can be yx so any of these structures 

can be interpolated. Once again we see can see that the fundamental (1.0) is held constant and the 

notes produced are the same as those produced by rotating the wheel. Multiplying in this manner 

also automatically make the correct placement of the commas.  
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 Combining the xyz structures produces the decimal value of each structure. 

 

06666.1

11111.1

125.1







z

y

x

 

 

2
223  zyxyxzxxyz  

5.1
2  yzxxxyz  

 

 

 

The charts on the following two pages illustrate this. 
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C G D A E B FG 
C 2.0 C 2.0 C 2.0 C 2.0 C 2.0 C 2.0 C 2.0 

xyz x yxz xyz x yxz xyz x yxz xyz x yxz xyz x yxz xyz x yxz xyz x yxz 

B 1.875 B 1.875 B 1.875 B 1.875 B 1.875 B 1.875 B 1.875 

xyz x yx xyz x yx xyz x yx xyz x yx xyz x yz xyz x yx xyz x yx 

BH 1.77777 BH 1.8 BH 1.8 BH 1.77777 AG 1.75781 AG 1.75781 AG 1.75781 

xyz x yz xyz x xz xyz x xz xyz x yz xyx yx xyx yx xyx yx 

A 1.66666 A 1.6875 A 1.6875 A 1.66666 A 1.66666 A 1.66666 A 1.6875 

xyz x y xyz x x xyz x x xyz x y xyz x y xyz x y xyz x x 

AH 1.6 AH 1.6 GG 1.58203 GG 1.5625 GG 1.5625 GG 1.5625 GG 1.58203 

xyz x z xyz x z xyx x xyx y xyx y xyx y xyx x 

G 1.5 G 1.5 G 1.5 G 1.48148 G 1.5 G 1.5 G 1.5 

xyz x xyz x xyz x xyz y xyz x xyz x xyz x 

FG 1.40625 FG 1.40625 FG 1.40625 FG 1.38888 FG 1.40625 FG 1.40625 FG 1.40625 

xyx xyx xyx xyy xyx xyx xyx 

F 1.33333 F 1.33333 F 1.35 F 1.33333 F 1.33333 EG 1.31835 EG 1.31835 

xyz xyz xzx xyz xyz x 
z

y  x x 
z

y  x 

E 1.25 E 1.25 E 1.26526 E 1.25 E 1.25 E 1.25 E 1.25 

xy xy xx xy xy xy xy 

EH 1.2 EH 1.2 EH 1.2 DG 1.17187 DG 1.17187 DG 1.17187 DG 1.17187 

xz xz xz 
z

xy  
z

xy  
z

xy  
z

xy  

D 1.125 D 1.125 D 1.125 D 1.11111 D 1.11111 D 1.125 D 1.125 

x x x y y x x 

DH 1.06666 DH                                                                    1.06666 CG 1.05468 CG 1.04166 CG 1.04166 CG 1.05468 CG 1.05468 

z z z
x  

z
y  

z
y  z

x  
z

x  

C 1.0 C 1.0 C 1.0 C 1.0 C 1.0 C 1.0 C 1.0 
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C F BH EH AH DH GH 
C 2.0 C 2.0 C 2.0 C 2.0 C 2.0 C 2.0 C 2.0 

xyz x yxz xyz x yxz xyz x yxz xyz x yxz xyz x yxz xyz x yxz xyz x yxz 

B 1.875 B 1.875 CH 1.89629 CH 1.92 CH 1.92 CH 1.89629 CH 1.89629 

xyz x yx xyz x yx xyz x zyz xyz x zxz xyz x zxz xyz x zyz xyz x zyz 

BH 1.77777 BH 1.77777 BH 1.77777 BH 1.8 BH 1.8 BH 1.77777 BH 1.77777 

xyz x yz xyz x yz xyz x yz xyz x xz xyz x yz xyz x yz xyz x yz 

A 1.66666 A 1.66666 A 1.66666 A 1.6875 BHH 1.70666 BHH 1.70666 BHH 1.70666 

xyz x y xyz x y xyz x y xyz x x xyz z xz xyz z xz xyz z xz 

AH 1.6 AH 1.6 AH 1.58024 AH 1.6 AH 1.6 AH 1.6 AH 1.6 

xyz x z xyz x z xyz y z xyz x z xyz x z xyz x z xyz x z 

G 1.5 G 1.5 G 1.48148 G 1.5 G 1.5 G 1.5 AHH 1.51703 

xyz x xyz x xyz y xyz x xyz x xyz x zyz xz 

FG 1.40625 GH 1.42222 GH 1.42222 GH 1.44 GH 1.42222 GH 1.42222 GH 1.42222 

xyx x zyz x zyz x zxz x zyz x zyz x zyz 

F 1.33333 F 1.33333 F 1.33333 F 1.35 F 1.33333 F 1.33333 F 1.33333 

xyz xyz xyz xzx xyz xyz xyz 

E 1.25 E 1.25 E 1.25 FH 1.28 FH 1.28 FH 1.28 FH 1.26419 

xy xy xy zxz zxz zxz xyx 

EH 1.2 EH 1.18518 EH 1.18518 EH 1.2 EH 1.2 EH 1.2 EH 1.18518 

xz yz yz xz xz xz yz 

D 1.125 D 1.11111 D 1.11111 D 1.125 D 1.125 EHH 1.1377 EHH 1.1377 

x y y x x zz zz 

DH 1.06666 DH 1.06666 DH 1.06666 DH 1.06666 DH 1.06666 DH 1.06666 DH 1.06666 

z z z z z z z 

C 1.0 C 1.0 C 1.0 C 1.0 C 1.0 C 1.0 C 1.0 
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  The preceding charts represent the complete enharmonic scale. No further development 

will be needed. To briefly summarize, we constructed first the diatonic scale with two alternate 

notes, creating, in effect, three parallel diatonic scales. This trinity allows us to maintain proper 

tuning in the tonality of the center. 

 
  C 2.0   

  B 1.875   

  A 1.666666 A 1.6875 

  G 1.5   

  F 1.33333   

  E 1.25   

D 1.111111 D 1.125   

  C 1.0   

 

  This, in effect, creates a nine tone functional scale. Using the same procedure we 

constructed the tritonal chromatic scale. This doubles the number of scale members and 

provides enharmonic alternates for all of the intervals which are not perfect as well as tritonal 

alternates as with the diatonic scale. 

 

  C 2.0   

  B 1.875   

  BH 1.777777 BH 1.8 

  A 1.666666 A 1.6875 

  AH 1.6   

  G 1.5   

GH 1.4222222 FG 1.40625   

  F 1.333333   

  E 1.25   

EH 1.185185 EH 1.2   

D 1.111111 D 1.125   

  DH 1.0666666 CG 1.0546875 

  C 1.0   
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 By continuing the progression of parallel tonalities, each a fifth apart, we developed the 

enharmonic scale. This scale is, functionally, thirteen chromatic scales, creating a linear thirty-

seven-tone scale. 

 

 C 2.0     

CH 1.92 CH 1.89629 B 1.875     

    BH 1.77777 BH 1.8 AG 1.75781 

  BHH 1.70666 A 1.66666 A 1.6875   

  AH 1.58024 AH 1.6 GG 1.52803 GG 1.5625 

  AHH 1.51703 G 1.5 G 1.48148   

GH 1.44 GH 1.42222 FG 1.40625 FG 1.38888   

  F 1.35 F 1.33333 EG 1.31835   

FH 1.26419 FH 1.28 E 1.25 E 1.26526   

  EH 1.18518 EH 1.2 DG 1.17187   

EHH 1.13777 D 1.11111 D 1.125     

    DH 1.06666 CG 1.05468 CG 1.04166 

    C 1.0     

    

The scale itself will only have value if the various ratios can be expressed integrally. We achieved this 

in the chromatic scale by letting the tonality be equal to 45 (taking our cue from the fact that the 

tonality of the diatonic scale is 3). We were then able to express the chromatic scale as integers 

of a precise matrix, progressing by powers of three on one axis and powers of five on the other. 

 

 

  

If we imagine a line drawn diagonally through 1, 45 and 2025 we see the power series of 45 

developing. This is superpositioning in tritones. 2025 is 2
45  and the point of reciprocity of the 

structure. 2025 divided by any number on one side of the line produces its reciprocal opposite. 

The structure can be thought of as six reciprocal pairs plus 45. (1 - 2025, 3 - 675, 9 - 225, 27 - 75, 5 - 405, 

15 - 135, 45 -45) 

 Since 45 is the 'top' of the diatonic scale which is nine tones and 2025 or 2
45  is the 'top' 

of the chromatic scale of eighteen tones we can expect 2
2025  or 4100625, to be the 'top' of the 

enharmonic scale of thirty-seven tones. This would produce a matrix of 8
3 (6561) on the vertical 

(81) 405 2025  BH D FG 

27 135 675  EH G B 

9 -45- 225  AH -C- E 

3 15 75  DH F A 

1 5 25  GH BH D 
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and 4
5 (625) on the horizontal. This is as large as the matrix needs to get for all practical 

musical purposes. 

 2
45  produces the augmented seventh which is the inversion of the enharmonic comma. 

This structure can be considered to be a superposition of the enharmonic comma. 

 

251.97753906
1024

2025

2

45
10

2

  

 

4691.01135802
251.97753906

2
  

 
2

2025  )45(
4  misses 22

2  by the square of the enharmonic comma. 

 

410761.02284505
4100625

4194304

2025

2
2

22

  

 

 

4691.01135802410761.02284505   

 

 The fundamental is still 1 but the tonality would become 2025. We discovered 

previously that if we multiply the values of the chromatic scale by 14402*45
5   we produce 

the scale as integers of one octave 

 
1440 1440      1.0 1.0 

1920 2160      1.3333 1.5 

2560 1620      1.7777 1.125 

    1620 2025    

1728 2400  1728 2160 2700  1.2 1.6666 

2304 1800  2304 1440 1800  1.6 1.25 

1536 2700  1536 1920 2400  1.0666 1.875 

2048 2025  2048 2560   1.4222 1.4062 

 

If we multiply the values of the enharmonic scale as they exist in the prime octave 
1

2  

by 1036800 )2*2025(
9  we produce the enharmonic scale as integers of one octave. 
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1.011358         a 

  

FG 1.40625 1458000  GH 1.422222 1474560 

 1.0125 a   1.0125 a 

FG  1.388888 1440000  GH 1.44 1492992 

 1.0208806 b   1.0208806 b 

F 1.35 1399680  G 1.481481 1536000 

 1.0125 a   1.0125 a 

F 1.333333 1382400  G 1.5 1555200 

 1.011358 c   1.0125 c 

EG 1.31839 1366875  AH 1.51703 1572864 

 1.029968 d   1.029968 d 

FH 1.28 1327104  GG 1.5625 1620000 

 1.011358 c   1.011358 c 

E 1.265625 1312200  AH 1.58024 1638400 

 1.0011295 e   1.0011295 e 

FH 1.26419 1310720  GG 1.58203 1640250 

 1.011358 c   1.011358 c 

E 1.25 1296000  AH 1.6 1658880 

 1.041666 f   1.041666 f 

EH 1.2 1244160  A 1.666666 1728000 

 1.0125 a   1.0125 a 

EH 1.185185 1228800  A 1.6875 1749600 

 1.011358 c   1.011358 c 

DG 1.171875 1215000  BHH 1.706666 1769472 

 1.029968 d   1.029968 d 

EHH 1.1377777 1179648  AG 1.75781 1822500 

 1.011358 c   1.011358 c 

D 1.125 1166400  BH 1.777777 1843200 

 1.0125 a   1.0125 a 

D 1.1111111 1152000  BH 1.8 1866240 

 1.041666 f   1.041666 f 

DH 1.0666666 1105920  B 1.875 1944000 

 1.011358 c   1.011358 c 

CG 1.0546875 1093500  CH 1.89629 1966080 

 1.0125 a   1.0125 a 

CG 1.0416666 1080000  CH 1.92 1990656 

 1.041666 f   1.041666 f 

C 1.0 1036800  C 2.0 2073600 

 

 Each of the prime octave decimals is represented by a whole number and this series is 
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the smallest series of integers that can represent the enharmonic scale. The enharmonic scale is 

totally reciprocal. Each column is identical. The scale is composed of six discrete intervals. 

 

a 1.0125 

b 1.028806 

c 1.011358 

d 1.029968 

e 1.0011295 

f 1.0416666 

 

 If we arrange these in accordance with the groupings defined by the xyz structure of 

the diatonic and chromatic scales we get. 

 

facfa cdcaf cecdc aba c aba cdcec facdc afcaf 

 

The enharmonic scale is a totally complete music system. It needs no further 

development. This scale is balanced, symmetrical and can be considered a closed system. 

 
THE ENHARMONIC MATRIX 

 

The integers of the enharmonic scale as shown are upper octaves of odd numbers with 

the exception of EG (1.318359375), which numerically is 1366785. If we reduce these numbers to 

their basic octaves, that is, the value at which they enter the system, we get. 

 

1458000 1474560  91125 45 

1440000 1492992  5625 729 

1399680 1536000  10935 375 

1382400 1555200  675 6075 

1366875 1572864  1366875 3 

1327104 1620000  81 50625 

1312200 1638400  164025 25 

1310720 1640250  5 820125 

1296000 1658880  10125 405 

1244160 1728000  1215 3375 

1228800 1749600  75 54675 

1215000 1769472  151875 27 

1179648 1822500  9 455625 

1166400 1843200  18225 225 

1152000 1866240  1125 3645 

1105920 1944000  135 30375 

1093500 1966080  273375 15 

1080000 1990656  16875 243 

1036800 2073600  2025 2025 

                                                                                                  
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 Once again we have a series of numbers that, as with the chromatic scale, create a 

matrix. 

If we arrange these, letting C=2025, in the form of the matrix developed by the powers 

of three on one axis and five on the other, we get the system illustrated below. Unlike the 

chromatic matrix, however, neither the fundamental (1) nor the point of reciprocity (in this 

case 4100625) appears in the functional part of the matrix. 

 

 
  164025 820125  

 10935 54675 273375 13366875 

729 3645 18225 91125 455625 

243 1215 6075 30375 151875 

81 405 2025 10125 50625 

27 135 675 3375 16875 

9 45 225 1125 5625 

3 15 75 375  

 5 25   

 

 

  E GG  

 F A CG EG 
GH BH D FG AG 
CH EH G B DG 
FH AH C E GG 
BHH DH F A CG 
EHH GH BH D FG 

AHH CH EH G  

 FH AH   

 

The chart on the following page presents the matrix with both the prime octave 

decimals and the integral values. The chromatic scale is formed between the tritone (45) and its 

reciprocal inversion. The enharmonic scale is formed between two enharmonic values of the 

principal tone, which is now 2025. The fundamental (1) is DHH (1.01135802) and the reciprocal 

point is BG (1.97753906). The values of the principal tone C altered by the diatonic comma 

(1.0125) also lie beyond the area defined by the enharmonic scale. Thus C, the principal tone or 

tonality of the system is, as it must be, unchallenged. 

Counting the fundamental (1) and its enharmonic equivalent (4100625) the system covers 

twenty-one octaves. The actual system is nineteen octaves. This is a very large system 

considering the range of human hearing is about ten octaves. 
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6561 

AH 
1.62 

320805 

C 

1.0125 

164025 

E 

1.265625 

820125 

GG 
1.528031 

4100625 

BG 
1.9775391 

2187 

DH 
1.08 

10935 

F 

1.35 

54675 

A 

1.6875 

273375 

CG 
1.0546875 

1366875 

EG 
1.318393 

729 

GH 

1.44 

3645 

BH 
1.8 

18225 

D 

1.125 

91125 

FG 
1.40625 

455625 

AG 
1.7578125 

243 

CH 
1.92 

1215 

EH 
1.2 

6075 

G 

1.5 

30375 

B 

1.875 

151875 

DG 
1.171875 

81 

FH 

1.28 

405 

AH 
1.6 

2025 

C 

1.0 (2.0) 

10125 

E 

1.25 

50625 

GG 
1.5625 

27 

BHH 
1.7066666 

135 

DH 
1.0666666 

675 

F 

1.33333333 

3375 

A 

1.66666666 

16875 

CG 
1.04166666 

9 

EHH 
1.13777777 

45 

GH 

1.4222222 

225 

BH 
1.7777777 

1125 

D 

1.11111111 

5625 

FG 
1.38888888 

3 

AHH 
1.517037 

15 

CH 
1.896296 

75 

EH 
1.185185 

375 

G 

1.481481 

1875 

B 

1.851851 

1 

DHH 
1.011358 

5 

FH 

1.2641975 

25 

AH 
1.5802469 

125 

C 

1.975308 

625 

E 

1.234567 
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We can now observe the following progressions. 

 

 
6561 32805 164025 820125 4100625 

2187 10935 54687 273375 13366875 

729 3645 18225 91125 455625 

243 1215 6075 30375 151875 

81 405 2025 10125 50625 

27 135 675 3375 16875 

9 45 225 1125 5625 

3 15 75 375 1825 

1 5 25 125 625 

 

 

A C E GG B 

DH F A CG EG 
GH BH D FG AG 
CH EH G B DG 
FH AH C E GG 
BHH DH F A CG 
EHH GH BH D FG 

AHH CH EH G B 

DHH FH AH C E 

 
The line of the commas runs from right to left. It enters the matrix at 125, forming 1.024 

(128/125 = 1.024). Next it touches 2025, forming 1.01135802 (2048/2045 = 1.01135802). It finally quits 

the matrix at 32805, forming 1.00112915 (32768/32805 = 1.00112915). The relationship of each 

progression is the same as that of 5 and 81 establishing the fact that each successive comma is a 

modification of 1.024 by 1.0125. 

The other line, going from left to right, shows the numerical center of the matrix (2025), 

which is also the power series of 45. The reciprocal point in this case is 4100625. This number 

divided by any number on one side of the line produces its positional counterpart on the other 

side of the line. 

 

125
32805

4100625
32805

125

4100625
   etc. 

 

If we discount the principal tone (2025) there are eighteen intervals and their inversions. 

Thirteen of these intervals are grouped as right base generations of 2025 itself, that is, if we let 

2025=1 these tones can still be represented by whole numbers.  
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The result is the familiar chromatic matrix, shown here with its inversions. 

 

 

  

 

164025 820125  

  54687 273375 1366875 

  18225 91125 455625 

  6075 30375 151875 

81 405 2025 10125 50625 

27 135 675   

9 45 225   

3 15 75   

 5 25   
 

  E GG  

  A CG EG 

  D FG AG 

  G B DG 

FH AH C E GG 

BHH DH F   

EHH GH BH   

AHH CH EH   

 FH AH   

 

If C=2025 then this is a descending chromatic scale of FG on the upper right and its 

reciprocal, an ascending chromatic scale of GH on the lower left. There are ten intervals 

remaining (five reciprocal pairs). These are formed by various octaves of the power series of 3 

and various octaves of the power series of 5. 
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Since neither member of the ratio is an octave of the fundamental (the power series of 

2) the notion of root position becomes slightly more oblique. Let us assume that because of the 

acoustical power of the power series of 3 we can expect that an interval formed by powers of 5 

and powers of 3 can be said to be in root position when a power of 3 is in the denominator. 

Thus 
3

5  is the root position of A (1.6666) even though its inversion 
5

6  is a prime interval.  

 

These ten new values fill out the matrix. 

  

 (32805) 164025 820125  

 10935 54687 273375 1366875 

729 3645 18225 91125 455625 

243 1215 6075 30375 151875 

81 405 2025 10125 50625 

27 135 675 3375 16875 

9 45 225 1125 5625 

3 15 75 375  

 5 25 (125)  

 

 (C) E GG  

 F A CG EG 

GH BH D FG AG 

CH EH G B DG 

FH AH C E GG 

BHH DH F A CG 

EHH GH BH D FG 

AHH CH EH G  

 FH AH (C)  
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Now the line of the octave, 125 - 2025 - 32805, forms the reciprocal structure. This is 

produced by what might be called the regression of the commas. If the notes are represented 

by integers then 4100625 divided by any integer in the matrix produces its inversion. If the 

notes are represented by prime octave decimals then 2 divided by any of the decimals in the 

matrix produces its inversion. In the non-linear mathematics of music (and as we shall see, 

vibration) 1 and 2 have the same relative position to one another as any integer and its square. 

If we now illustrate the enharmonic matrix as the ratios that produce the prime octave 

values we can observe why, structurally, 2025 is the center of the system even thought 1 

remains the absolute fundamental. For practical reasons we consider the enharmonic scale as 

being composed of integers. Structurally we must consider it as being composed by ratios. 

Each decimal value in bold type, (G=1.5, D=1.125, etc.) is produced by an odd integer 

divided by a power of 2. The reciprocals on the other hand, are produced by a power 2 divided 

by the same odd integers. FG, or 1.40625 would be 
32

45 . Its inversion would be GH, 1.422222 or 

45
64 . 
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64

81
 

256

405
  

  E 1.265625 GG 1.528031   

 
20

27
 

16

27
 

128

135
 

512

675
 

 F 1.35 A 1.6875 CG 1.0546875  EG 1.318393 

25

36
 

5

9
 

8

9
 

32

45
 

128

225
 

GH 1.44 BH 1.8 D 1.125 FG 1.40625 AG 1.7578125 

25

48
 

5

6
 

2

3
 

8

15
 

64

75
 

CH 1.92 EH 1.2 G 1.5 B 1.875 DG 1.171875 

25

32
 

5

8
 

1

2
 

4

5
 

16

25
 

FH 1.28 AH 1.6 C 1.0 (2.0) E 1.25 GG 1.5625 

75

128
 

15

16
 

3

4
 

3

5
 

24

25
 

BHH 1.706666 DH 1.066666 F 1.333333 A 1.666666 CG 1.041666 

225

256
 

45

64
 

9

16
 

9

10
 

18

25
 

EHH 1.137777 GH 1.422222 BH 1.777777 D 1.111111 FG 1.388888 

675

1024
 

135

256
 

27

32
 

27

40
  

AHH 1.517037 CH 1.896296 EH 1.185185 G 1.481481  

 
405

512
 

81

128
   

 FH 1.2641975 AH 1.5802469   
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SUMMARY 
 

The enharmonic scale is a precise and discrete reality. There is one, and only one 

enharmonic scale and the definition offered in Part I is an absolute. The enharmonic scale is 

easy to construct, as it is the product of only three numbers, 3, 4 and 5. 

Music is constructed functionally by a series of prime ratios, that is, ratios comprised of 

consecutive numbers. The prime interval is the ideal in music and the preceding scale allows 

us to fully realize this ideal. 

These ratios, or intervals, form a series that we shall see appear in various aspects of 

acoustics and vibration.  

 

80

81
 1.0125 

24

25
 1.04166666 

15

16
 1.06666666 

9

10
 1.11111111 

8

9
 1.125 

5

6
 1.2 

4

5
 1.25 

3

4
 1.33333333 

2

3
 1.5 

1

2
 2.0 

 

We will seldom see it progress past 
15

16  but it will be seen often. Those seven ratios 

between 
2

3  and 
15

16 (inclusive) plus their inversions provide sufficient material to create the 

pentatonic, diatonic and enharmonic scales. That is to say that every scale member of these 

three scales will form an interval with the tonality that is either a prime interval or its 

inversion. 

We have seen that to maintain the integrity of these ratios we had to construct a 

progressive series of thirteen interrelated scales. These are structured by fifths from a given 

tone (1.422222) to its enharmonic alternate (1.40625). These fifths are modified after each set of 

three progressive fifths three times by the diatonic comma (1.0125) and once by the chromatic 

comma (1.024). The two commas are concurrent after the sixth member of the series. If the 

move is to the right the diatonic comma lowers the value of the affected fifth 

481481481.1
0125.1

5.1  . The chromatic comma would raise the same fifth 536.1024.1*5.1  . The 
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chromatic comma divided by the diatonic comma produces the comma we actually observe at 

this midpoint of the structure.  

 

4691.01135802
0125.1

024.1   

 

By the same token the cube of the diatonic comma divided by the chromatic comma 

produces the Pythagorean Comma. 

547705078121.01364326
024.1

0125.1
3

  

 

This ability to tune by shifting tonalities structurally within a single tonal center allows 

us to displace the various commas linearly. By this method the fifths, fourths and major thirds 

(and their inversions) are always the ideal ratios. 

The differential tones created by intervals of the various tonalities create, in turn, 

simple, hierarchical structures with various sub-fundamentals. The conglomerate of these, in 

turn, produces a grand fundamental. Because of this it is important to realize that the 

differential tone is real. It is in every way just as real as the tones that create it. 

Playing in tune then is nothing more than keeping the overall differential structure as 

simple as is mathematically possible. Playing in tune, however, is only a small part of what 

this device will be capable of ultimately providing. We can observe that if we trace the 

ultimate structure of any given group of inputs we arrive at a simple arithmetic overtone 

structure, 1, 2, 3, 4 … etc. It is from this overtone series that the structure, which produces the 

tone itself, arises. 

Music is a specific form of sound. Physically speaking it is nothing else. All sound is 

the result of vibration. All vibration is similar, no matter if it is the vibration of an atom, the 

sound of a trombone or the ring of the earth caused by an earthquake. 

Newtonian physics tells us that if we reduce the mass of a vibrating body by 
2

1 , the 

fundamental (and thus its structure) is raised in pitch by one octave. How small must the mass 

become before this cease to be true? If this is not the atom itself it can't be any larger that a 

crystalline structure. On the other hand how large can we make this vibrating mass? There 

would appear to be no practical limit. It could range form the atom to the universe itself. 

There is no reason to believe that there would be any inconsistency in the nature of 

vibration, no matter what the mass of the vibrating body. What is true for one size would be 

true for all. 

Because of its special nature music offers us a look at this energy restructuring we call 

vibration in a very unique manner. The mathematics of Part I is complete. This mathematics 

will provide us with the ability to exert a control over a vibrating, or stationary structure that 

will be truly awesome. This control is precise, digital and absolute. 

As we understand more of the nature of a vibrating structure we will see that the ability 

to keep our scales in tune is truly a secondary function of the enharmonic system. 

The mathematics of the enharmonic system is useful only to the degree that they can be 

applied empirically to physical reality. This will be realized in the following sections. 
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STRUCTURAL RESONANCE 
 

 

THE MATHEMATICS OF MUSIC 

AND VIBRATION 

 

 

PART TWO 
THE NON-LINEAR WAVE 

 
By 

 

Thomas Wagner 

 

 

 

 
 

 

 

 

ALL THE SOUNDS OF THE EARTH ARE LIKE MUSIC 

Oscar Hammerstein 

 

Mathematics deals exclusively with the relation of concepts to each other 

without consideration of their relation to experience. 

Physics too deals with mathematical concepts; however,  

these concepts attain physical content by the clear 

 determination of their relation to the objects of experience. 

Albert Einstein 

 

Third time's a charm! A broken mirror brings seven years bad luck. A cat has nine lives. Seven 

come eleven and Friday the thirteenth. The numbers of magic? Of numerology? Of children's 

rhymes and ancient folklore? Yes, all of these but they are also the numbers of  

 

© 1978, 1982, 1999 Thomas Wagner 
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music, or, more correct, the numbers that aren’t part of music. A common theme runs through 

ancient writings, especially those of the Hellenes. This states that good is associated with the 

rational numbers whereas ‘evil comes in through the irrational’.  

It seems numbers have always intrigued man. The inquisition actually burned those 

who held to the Pythagorean concept of the number three. The Pythagoreans held the number 

three to be the perfect number because it had a beginning, middle and an end. The inquisition, 

on the other hand, held the number three to be the perfect number because it had no beginning 

middle or end. What could number possibly have meant to the medieval church that would 

incite such a reaction? 

The number three is associated with the circle. When musical calligraphy first 

developed triple time was considered to be the perfect time signature. The symbol used to 

designate this was the circle. A trace of that remains today as four-four time or so-called 

common time indicated by a broken circle or C. The circle was broken to indicate imperfect 

time. 

Part one offers a comprehensive mathematical description of music phenomenon. It is 

important to understand what music is in the physical world in order to put these numbers to a 

logical use. Here again we will find that all aspects of music exist as a complex arrangement of 

one basic phenomenon, the differential tone. Understand the differential tone and one 

understands all of music. 

The differential tone is a real tone created by sounding at least two frequencies 

together. In fact, most of what we consider to be music is the result of things that happens 

somewhere else in the system. We shall discover that what we call timbre is the result of a 

complex differential structure. It is the differential tone that gives the perfect fifth its power (a 

phenomenon as real today as it was to Cro Magnon). 

It is impossible to sound two or more distinct frequencies without producing at least 

one differential tone, and in most cases, several of them. Making music is really nothing more 

than a precise and controlled modification of the differential structure. There can only be one 

fundamental. No matter what complex of frequencies is sounded, one, and only one, 

fundamental will appear. 

Here are the primary differential tones produced by the hierarchy of prime intervals. 

As we increase the values of the two numbers forming the prime interval the size of the 

interval becomes smaller and the 'distance' to the fundamental is increased. Thus far in our 

observations we have held the fundamental as a constant allowing the intervals themselves to 

occupy their normal overtone positions. Let us look at these intervals as they would appear in 

music theory, that is, with the bottom note of the interval held as a constant. 
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As the interval become smaller the differentially produced fundamental becomes more 

remote. For the current discussion it is important that we are aware of two things: a., in every 

case but the octave the fundamental is a separate tone differentially produced by the two 

sounding tones, and b., the fundamental does not enter into differential relationships with any 

other tone. The fundamental includes every sounding ratio because it is created by those very 

ratios. 

It is for this reason that prime intervals are especially significant. Since the 

fundamental is a non-participatory member of the structure (that is, it forms no differential 

tones with any other note of the interval) it follows that a prime interval adds nothing to the 

structure but a boost to the fundamental (which is of course the ultimate goal of all concerted 

music). This is true regardless of the size of the numbers that create the prime interval. 
80

81  is 

just as benign to the system as 
4

5 . Any ratio that is not created by consecutive integers will 

form a differential tone that is not the fundamental and thus must be considered to be an active 

member of the integral structure that will ultimately create the fundamental. 

Consider the interval
5

6 , the minor third. Because of the fact that it contains an even 

number this interval is the inversion of a more basic interval, that is, 
3

5 , the ideal major sixth. 

The primary differential tone formed by this interval is 2. While 1=2 and thus 2 is in every 

respect the 'same' as the fundamental the fact remains that 2 is an active member of the 

structure while 1 is not. 2 exists as a real tone and thus, as we have seen previously by 

example, 2 will react with 3 to form 1. 

 
This 

3
5 forms two differential tones 1 and 2. All non-prime intervals behave in this 

manner. Notice that any given interval has the same fundamental as its inversion. 

We can observe that any increase of the complexity of an input structure lowers the 

fundamental. Consider the following example. 

 

 
 

 If nothing else is sounding, then the perfect fifth is always 
2

3  and produces, 

differentially, nothing but the octave below 2. On the other hand, if we add the major third 

above the lower tone we create the triad. In this case the fifth must be 
4

6 instead of 
2

3 . The 
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interval 
4

6  produces, of course, 2 as its primary differential tone. 2 is an active tone and will 

react with 3 to form 1, further increasing the amplitude of the fundamental. The addition of the 

third lowers the fundamental by one octave. 

It is, of course, not always that simple. Consider a common, somewhat modern 

structure. 

  

 
 

The simple addition of AH completely changes the numerical structure. What was 4,5,6 

now becomes 20,25,30,32. The fundamental of this structure now lies two octaves and a major 

third below the fundamental of the simpler triad and is a low AH. However, because of the 

position of the very powerful triad the ear would hear and accept 5 as the fundamental. We 

would class it as a C triad with a lowered or diminished sixth even though the true 

fundamental is AH. 
The triadic structure would cause 5 to be much louder than 1.  5 also has the advantage 

of lying more than two octaves nearer the complex itself. As long as the triad is sounding alone 

the only differential tones possible are 1 and 2 (5 and 10 in the case of the four tone structure). 

When the minor sixth (32) is added the number of possible differential tones increases greatly. 

5, since it is no longer the fundamental, becomes an active member of the series. It reacts with 

32 to form 27.  5 and 27 are both real tones and, because of the strength if 5, they are very 

prominent. 25 sounds with 27 to form 2, which is fine. 27 reacts with 30 to form 3, also fine. 20 

on the other hand reacts with 27 to form the troublesome 7. 25 reacts with 32 to also form 7, 

thus increasing the amplitude of 7. 7 in turn reacts with 20 to form 13 and so on. A simple four-

note input structure creates a differential structure of amazing complexity. The tiniest change 

of the amplitude of any input also alters this differential tone complex profoundly. 

This explains at least one reason why the pentatonic scale is so successful. This scale, 

which is 16, 18, 20, 24, 27, permits a very complex potential differential structure. If the entire 

scale sounds at once, the fundamental will lie exactly four octaves below the root of the scale 

(16). If we omit 27 from the complex it reduces to 8, 9, 10, 12, placing the fundamental three 

octaves below the root of the scale. If we omit 9 the complex reduces to 4, 5, 6 bringing the 

fundamental to two octaves below the root. If we then omit 5 we obtain 2, 3 and the 

fundamental comes to within an octave.  

Sounding various combinations of the scale produces variously 'colored' versions of 

the fundamental in various octaves. 
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We can see that as the fundamental becomes more remote from the structure initiating 

it, the differential structure can and does become much more varied and complex. A basic 

arithmetical series of real frequencies is formed with differing intensities. These differences in 

amplitude are caused by the number of combinations that in one way or another create the 

frequency in question by differentiation. This increase in amplitude appears to be simply 

additive, that is, if two intervals create the same differential tone, and with the same intensity, 

the resultant will have twice the amplitude. In this manner a structure is formed in which the 

amplitudes of the various members have nothing at all to do with their respective numerical 

positions in the series. Harmonic analysis shows this clearly. Sometimes a partial will have 

greater amplitude than the fundamental.  

The structure formed will ultimately consist of all the integers from 1 to the input 

structure itself. The differential structure appears as though it is formed from consecutive 

integers. We know that it has been formed from a structure created by a very few inputs and 

with very limited choices. 

While all of this forms a good basis for any argument in music theory what is important 

for this discussion at this point is the fact that the differential structure that ultimately creates a 

fundamental is precisely the same, in every way, as the structure that creates what we call the 

timbre of a musical tone. 

If the sequential overtone structure of the tone is the same as that of the harmonic 

fundamental, that is, being composed of sequential frequencies with amplitudes that look to be 

completely random, then we must conclude that in all probability the input structures that 

create the fundamentals and the input structures that create tones must be, by and large, 

identical. With this in mind let us take a look at the structure of a musical tone. 

 

THE TONE 

 

In every field of endeavor there are ideas or concepts that have become dogma merely 

by their having been around so long. One might say that such concepts have become axiomatic 

by persistence. Such an idea is the notion that a tone is comprised of a fundamental and its 

overtones. When we analyze a sound by accepted methods that is what we see. In the 

preceding paper I stressed the fact that even with state-of-the-art equipment we are unable to 

create a sound that is real. We shall discover that the problems encountered when attempting to 

create a real-sounding music tone are basically the same as those found in tempered tuning. 

If this is true then differentiation must play the same role in the creation of a tone as it 

does in the sounding of any interval. Harmonic analysis shows us that the overtone series is 

comprised of overtones of varying intensities. If these tones are created by super positioning, 
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and in this case common belief is that a vibrating body is sounding all of these tones at the 

same time, we should expect that the overtone series would be comprised of overtones whose 

amplitudes grow progressively weaker as we ascend the series.  

This, of course, does not happen. If it did the sound would be dreadful. Sounding a 

series of overtones that diminish asymptotically creates a ghastly, unmusical sound. 

Sometimes the actual sounding series of an instrument has missing overtones. The slightest 

alteration of how an instrument is played greatly affects the series. We have to question the 

notion of super-positioning .The overtone series is discrete and yet we use analog methods to 

analyze it. A Fourier transform reduces a complex wave into individual sine waves. As such it 

is very useful tool, but there is no reason to think that this is what happens in the function of a 

vibrating or resonating body, 

The notion of a sequential overtone structure has its roots in the famous experiments by 

Pythagoras. These experiments do indicate that the integral of the frequency is a result of a 

reduction in mass equal to the reciprocal of the integer of the frequency. If one stops a string 

one third of the way from the end it will create a sound whose frequency will be three times 

that of the fundamental. This establishes the relationship between mass and frequency but it 

does nothing to establish a sequential overtone structure. 

The real significance of the third overtone in the structure will become clearer as we 

progress. What we need is empirical examples of exactly what this input structure is. This 

cannot at this time be gleaned from the differential structure itself as observed in an 

oscilloscope. We must find this structure at the source, before other forces change its nature. 

For this we will initially need a large vibrating area with a low fundamental frequency, such as 

the tympani. 

 

THE DIAMETRIC NODES 

 

Of one thing we can be sure. The function of the air when it behaves as a carrier and 

the function of the air when it behaves as a generator are quite different in nature from one 

another. What makes any gas unique is its compressibility. The carrier wave is, in fact, made 

up of spherical volumes of air, which are compressed followed by the reciprocal version in 

which the air is rarified. 

We define this carrier structure as the 'sound wave' (it is, after all, what actually strikes 

the ear drum). We seem to be unaware of the degree of modification this carrier structure 

imposes upon the basic generator structure. The carrier wave always behaves sympathetically. 

It cannot generate sound. To look for the generating structure in the carrier wave is a mistake. 

Yet this is invariably what we do. What we see is a structure that seems to support the 

notion that a sound is made up of a fundamental plus its overtones. What we are analyzing is 

the airborne carrier wave. We assume that the information carried by the pressure wave is the 

same as that of the body that creates it. We overlook that fact that air, being a gas, has 

properties that affect the initial structure to a significant degree. 

We must go to the source and look for the makeup of the structure as it appears on the 

instrument itself. We will examine this first on the membrane of the tympani, mainly because 

the tympani lends itself so well to a fairly simple set of experiments. 

There are two generally held assumptions regarding the tympani. First, the membrane 

vibrates by sounding first the fundamental and then the overtones in sequential fashion. 
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Second, the tone one hears is thought to be the fundamental. Most analytical thinking starts 

here. 

If, indeed, a vibrating body sounds every overtone it must have the inherent potential 

to sound every frequency in the series and this should be easily detectable. If the membrane of 

the tympani is actually generating each and every overtone of the structure as we read it from 

the airborne carrier, then the membrane must have the capability of responding to the frequency 

of any given overtone. Experiment, however, proves that this is not true. 

If the membrane of the tympani is struck it emits a sound that is definitely musical. 

This is a subjective definition. By calling it musical it is meant that it is possible to discern its 

pitch (this paper puts forth the notion that all sound is pitched and that noise is subjective, just 

as is the notion of dissonance). The tympani, unlike the bass drum, the snare drum, the 

tom-tom, the conga drum, etc., sounds an easily discerned pitch. Here is a clear example of 

how we are trapped by our senses. All sound is the result of an aggregate structure formed by 

the differential result of an input structure, which is integral.           

Since it is impossible to sound a complex of simultaneous frequencies that are not 

integral it is impossible to sound a complex of frequencies that will not produce a fundamental. 

All sound is pitched. The only difference between the tympani and the other percussion 

instruments mentioned is that the pitch of the tympani is discernable. The fundamental of 

indiscernible pitched sound is remote and often is the result of many pitches sounding together 

and this is why we cannot discern it. The fact that we cannot hear the pitches of various drums 

does not make them any less real. 

If there is a basic input structure that will in turn differentially create the sequential 

structure our analyzers tend to see, then it must, in fact, be the only sounds the tympani is 

capable of producing. Unfortunately when we hit the drum we get everything. It is very hard to 

break the patterns down into the basic forms. 

Because of the size of the membrane we can affix a small piece of ferritic metal to the 

drum without seriously affecting the structural patterns that develop. Then, by use of an 

electromagnet, we can inject any frequency we choose. 

If we sprinkle the membrane with a fine black powder we have an extremely sensitive 

detector of any minute change in the topological configuration of the drumhead. The black 

powder instantly displays any change in the drumhead caused by the input frequency. 

If we use, as our input, a variable oscillator and begin well below the pitch of the 

tympani, then gradually raise the input frequency, we find that through most of the range of 

input frequencies nothing significant happens to the powder on the membrane. At several 

distinct pitches, however, the powder very dramatically forms itself into precise lines. These 

lines, in turn, form simple, basic geometric patterns, the Chladni patterns (named for their 

discoverer). The same pattern always appears at the same frequency. In the case of the tympani 

the pattern will be one of three types, or modes. 

One type is formed from concentric circles. These always divide the diameter into 

sections with isometric diameters. The second is formed from intersecting diameters, dividing 

the membrane into isometric, pie-shaped segments. The third type is a hybrid, formed of a 

composite of the circular and diametric modal types. 

Because all three types of patterns appear on the face of the tympani we assume that 

they all represent the same function. A closer look at the nature of the tympani would seem to 

indicate that the various pattern types, while related, are the results of different functions of the 
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vibratory pattern of the drumhead. It would also seem that we have a somewhat incomplete 

notion of what function of a vibrating body creates the sound, especially musical sound. 

In all likelihood the only patterns we will need concern ourselves with are those that 

are formed by intersecting diameters. The other two most likely represent different vibratory 

functions. In a freely vibrating body we may find that there are possibly no more than six of 

these diametric nodes. 

 

OSCILLATION 

 

The two most significant elements in any musical instrument are materials from which 

it is made and the shape. The mathematics developed thus far support a notion that acoustical 

phenomena are much more inherently consistent than we have imagined. 

One of the most constant factors in musical instruments is that at least one cross-section 

of the oscillating body is usually circular. All strings have circular cross sections. Virtually all 

wind and brass instruments have circular cross sections. The rare exceptions, such as the 

ocarina, are quasi-circular. In the few exceptions, such as xylophones, glockenspiels and 

cowbells the circle is replaced with a rectangle. This consistency suggests that the carrier wave 

is always exited in the same manner. This is not the way in which it is viewed in contemporary 

thinking. 

The membrane of the tympani is stretched over a frame that is round. The membrane 

itself is a cylinder (we need only consider that part of the membrane within the steel ring. That 

is the part that is free to vibrate). The body of the tympani is a modified cylinder. This 

modification is also consistent. Just as with virtually all other instruments, tympanis are all 

shaped exactly alike. 

All sound is initiated by something that oscillates. The uniform, reciprocal shape of all 

musical instruments directs most of the available energy into a few very low overtones, or 

possibly more correctly, modes of oscillation. Irregularly shaped vibrating bodies allow the 

bulk of the energy to remain in very complex structures that lie high in the series. However, 

the structures of both uniform and more randomly shaped vibrating bodies differentially create 

a fundamental. Noise as a physical reality does not exist. All sound must be created in 

precisely the same fashion. 

Let us return to the Chladni patterns. If we strike a tympani exactly in the center of the 

drumhead the result is a dull, unmusical thud. This is again consistent, in no musical 

instrument is the energy ever injected into the center of the oscillating member. If we feed the 

output from our variable oscillator into the center of the drumhead only the circular nodes 

appear. 

In order to create the lovely characteristic sound of the tympani one must strike the 

drumhead some distance from the center. Different distances produce different timbres. This is 

true for all drums. When the variable oscillator is fed to a point away from the center the 

diametric and hybrid nodes appear as well. The circular nodes themselves are unaffected by 

the off-center energy input. This forces us to assume that the circular nodes may not be part of 

the process that creates the actual interface to the airborne carrier. 

There are several logical arguments to support this assumption. Strings and drumheads 

have one significant thing in common; they are both cylinders with parallel sides. The major 

difference is in the ratios of the lengths to the diameters. In the string the length is enormous in 
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comparison with the diameter and conversely, in the drumhead the diameter is enormous in 

comparison with the length. 

A cylinder whose length is the same as its diameter would oscillate poorly no mater in 

which direction the energy input should be. By making one dimension very small and the other 

very large we make one direction a more productive oscillator than the other. In the string this 

motion is parallel to the plain of the diametric cross section and in the tympani it is at right 

angles to the plain of the diametric cross section. In both strings and tympanis the oscillating 

membranes are placed under tension. In the string this tension is in the direction of the length 

and in the drumhead is consistent around the edge of the drumhead. 

By actual definition neither oscillation, or for that matter, vibration adequately describe 

what actually happens to the strings or membranes when they are hit, scraped or plucked. If 

either the string or the drumhead merely moved to and fro, as would a pendulum, no 

significant structure would be formed and thus, no musical sound. 

What a vibrating, or oscillating membrane does is much more complex than just 

moving back and forth. Pendulums oscillate; strings and drumheads do something else 

entirely. Once we have defined its nature, the oscillating phase of sound generation will 

concern us little, thus it should be sufficient to use the term oscillation with the understanding 

that we mean the complex of motions that comprise the vibration. 

 

OSCILLATORY MOTION 

 

Consider the nature of a string under tension, and that this tension lies between two 

terminal points, A and B. 

 

 
 

It is impossible to pull this string from one end without the other end producing an 

effect exactly like the end that is pulled. No matter from whence the energy comes the string 

reacts as if the pull is equal from each end. This gives rise to some interesting thoughts, which 

will be pursued, in later sections Physics tells us that the force when the string is pulled is 

equal along the length of the line. However I am treating this as if the force were to be greater 

in the center of the line. This is because of the relationship of the string and the drumhead. IT 

is an interesting speculation in any case. 

As a string is pulled the mass of the string has to occupy a greater length. Since the 

mass is constant the only reaction must be for the string to reduce its diameter. Lord Raleigh’s 

restoring force causes the string to attempt to regain its original diameter. This in turn is what 

creates the pull on both ends. The buildup of forces is greatest in the center of the string. 

Anyone who has ever heated a glass tube in a Bunsen burner and then pulled the ends apart has 

seen this effect. 

Let us assume a force pulling the center of the string in a direction at right angles to the 

direction of the standing force. Such an application of force would produce this: 

 

A B
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This increases the force at C, which already is affected by the greatest buildup of 

forces. The shape the string is now oblong and not only is there a force pulling on the end but 

as the string attempts to regain its shape it now is affected by the transverse force of the oblong 

shape. The tendency is for the string to vibrate until it returns to the rest position. If the string 

is well constructed this can take considerable time. Observation tells us that this process is not 

simple. It does not just return to the center and then swing out to the other side. That is what 

would happen if it were simple harmonic motion. If this was what happened this oscillation 

would not generate the standing structure that produces timbre. 

Let us speculate on the action of the string when the pull on point C is released. Point C 

has the largest buildup of force. If this were not true we would expect the string to merely 

return to the starting position, then swing out the other way, as mentioned before. At the risk of 

oversimplification we can assume that the string must behave to some degree in the following 

manner.  

The released point C will move much faster than the points of the string closer to the 

ends. The only movement possible is exactly perpendicular to the original line AB. Point C 

should reach the starting line first and at the end of the first half period the string should look 

like this. 

 
Point C does not stop as it reaches the starting line and so it keeps moving. Once it 

passes the starting line the reciprocal of the original forces occur and the structure should 

become something like this: 

 
Things now get very complex as, while point C still is the point where the buildup of 

forces is greatest, we now have parts of the string moving in opposite directions. What 

happens next? My own feeling is that the next swing back to the top half of the cycle would 

produce five arches: 

 
 

 

 

 

A B

C

A B

C

A B

C

A B
C
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I have a reason for suggesting this. Consider these consecutive, basic shapes on both 

the string and the drumhead. 

 

 
 

The lines formed by the string in the previous example are exactly what any diameter of 

the drumhead would look like if viewed from the edge of the membrane. This gives us cause to 

assume that the circular nodes make up the oscillating phase of the structure. This division 

creates equal volumes in the string. The same equal divisions in the tympani create volumes 

that are in octave ratios. 

In the first figure, if the diameter of the inner circle is 1 and the diameter of the outer 

circle is 3 we can observe that the volume of the inner circle is 12
**h and the volume of the 

outer ring is 2
3 **h - 2

1 **h. Since in this case  and h are constant the ratio of the volumes is 

1
8 or three octaves. Thus in the second circle, if the diameter of the inner circle is 1, the 

volume of the outer ring is 2
5 - 2

3  or 16, four octaves lower than the inner circle and one 

octave lower than the middle circle. 

If a timpani is struck in the very center of the drum the sound is a dull thud. The same 

thing occurs if a sting is plucked in the very center. Vibrometer studies of the surface of a 

timpani show this very clearly. 

We can see empirically that the oscillating phase does not produce the sound. A 

vibrating string that is not directly connected to a resonator of sufficient size can scarcely be 

heard, and the sound that is actually heard is quite fuzzy and diffuse with scarcely a hint of 

timbre. 

Such movements would be difficult to detect with a strobe as the shape of the string 

changes every half cycle. This would create a rather diffuse, fuzzy image. Even if the strobe 

were to be in phase with the vibrating string the results would be blurred. I suggest that 

observers attribute this fuzziness to super positioning that is; the string is thought to be 

sounding all of its partials together. If this mode of vibration holds true then it must be true for 

all vibration 

The mouthpieces of brasses as well as the reeds of woodwinds, if removed from the 

main body of the horn also sound a fuzzy diffuse sound, sort of like a Bronx cheer. The 
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oscillating phase simply does not create the standing wave that ultimately gives us the 

sensation of timbre. 

The fact that the diametric nodes (and thus the timbre) only appear when the energy 

input is off-center indicates still another motion in the drumhead. Let us pull our string back in 

a point that is not the center creating this: 

 

 
 

The point of greatest build up of energy still remains at point C and thus when the 

string is released, point C gets to the starting position first as with the centered input. There 

exist a lag, however between right side of the structure and the left, creating a sloshing motion 

that ripples back and forth like waves in a bathtub. It is this undulation that creates the 

diametric nodes that, in turn, create timbre. This is just as true in the string as it is in the 

drumhead. 

The interesting thing here is that the motion behaves in much the same manner with or 

without the undulation. Any given point on the string can only move perpendicular to the 

length. The longitudinal shock waves formed by the flexing of the string are the same whether 

the energy is injected in the center or not. This apparent lateral motion must therefore cause 

the diametric nodes. This motion behaves much like a wave that forms in water in that the only 

actual motion is up and down but the apparent wave is longitudinal. The distance from the 

center is critical to the sound in any instrument.  

There is not one musical instrument with a string or membrane under tension in which 

the energy is introduced into the center of the oscillator. All such instruments inject the energy 

some considerable distance from the center. This distance is reasonably constant among the 

various instruments and the math is reminiscent of that which controls the length to diameter 

ratio of a rocket. The cylinder is, is all cases, a musical shape, no matter to which use it might 

be put. 

 

THE INTERFACE 

 

Before we return to the diametric nodes we must first take a look at the manner in 

which the resonating structure presents its information to the airborne carrier wave. Here, as 

with most other musical phenomena we find absolute consistency. The primary point of 

interface to the carrier wave is always across the plain of the circular cross section. This is true 

even if the resonating body is air. We shall discover that it is the standing structure that forms 

in the air that is the primary interface in the majority of all musical sounds, and quite likely, all 

sound. 

That is not to say that some sound is radiated from other sources and in other directions. 

A certain degree of the sound emanates from the sides of a trumpet but the main body of sound 

emanates from the interface that in this case is across the plain of the end of the bell. There is a 

striking orchestral device wherein the French horns are told to play a given passage 'bells up'. 

This points the bells right at the audience. This makes the sound of the horns appear to the 

listener as being much louder. The sound that emanates from anything other than the cross 

A B

C
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section of the diametric nodal structure is in sympathetic response with the diametric structure. 

We can state with sufficient accuracy that the thrust of the sound is in the direction of the 

length of the cylinder and perpendicular to the cross section of the diameters. The fact that 

there is certain spill to the sides of an instrument could prove to be very useful in analyzing 

these patterns. Since any resonator will modify the sound the sound from the sides of any 

instrument will color the sound to a degree. That will present no problem as it can be mixed 

with the primary structure. The ear receives simultaneous sounds as one structure so a mix of 

sounds will cause the ear to respond exactly the same as when excited by individual sources. 

Another example is a cathedral bell. When the bell swings toward the listener the sound is 

quite loud. When the bells swings away the sound is reduced considerably. 

The tympani is no different. The major input of sound into the carrier is on the surface 

of the drumhead. If we remove the drumhead and its tension creating devices from the 'kettle' 

of the drum we discover that the drumhead, when struck, produces a small, short lived, diffuse 

and nearly timberless sound. This leads us to believe that the drumhead does not create the 

diametric structure but, in all probabilities, sympathizes with it. It is reasonable to assume that 

the standing structure forms in the airspace of the tympani. 

Let us return now to the Chladni patterns. We can now support the notion that the 

diametric structure is all that we need seek, and we can do this, mathematically. 

 

THE DIAMETRIC STRUCTURE 

 

 One of the things that has baffled acoustical physics for a long time is that the nodal 

structure of the tympani appears to be composed of partials that are not harmonic. Let us 

consider the first six Chladni patterns developed by intersecting diameters. The numbers 

beneath each figure are the frequency ratios of these particular nodes in an ideal drumhead. 
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The lines represent the part of the drumhead that is not moving. These lines, in each 

case, divide the drumhead into pie-shaped segments of equal volume. 

Since the number of segments of any number of diametric divisions will always be 

equal, it follows that any opposing segments will be moving in the same direction and adjacent 

section will move in opposite directions. 

The numbers under the diagrams have been a mystery for years, as they appear to be 

non-harmonic whereas all tympani create a sound that is discernibly pitched and rather 

pleasant sounding. This would cause one to believe that the nodal structure would be a simple 

structure composed of familiar musical intervals. The common explanation is that the tympani 

'works' because the nodes approximate the basic harmonic series, and indeed they do, but in a 

slightly different manner than is currently accepted. 

If we look at the first two nodes intervallicly we see that  

 

96851.34591194
59.1

14.2   

 

This is very close to a perfect fourth of 1.33333, missing by only 1.00943396. This odd 

interval is the result of a prime comma, 00943396.1
106

107  . It is very close to being a perfect 

fourth. The ratio seems to be meaningless so we shall for the moment take a slightly different 

tack. 1.59 is very close intervallicly to the common musical ratio of 1.6, the difference being 
1.00628931.  

This is also a prime comma,  

 

1.00628931
159

160  . 

 

This is a more interesting comma as 160 is the fifth octave of 5 (5 x 2
5
). If we let 1.6 

replace 1.59 in the ideal series the first interval is now  

 

1.3375
6.1

14.2   

 

This misses 1.333333 by 1.003125. This is the result of a prime interval  

 

1.003125
320

321  . 

 

320 is the sixth octave of 5 (5 x 2
6
). If we assume the actual ideal to be 

3
4  then we 

should multiply 1.6 by 1.333333 giving us a value for the second node of 2.13333333. If we divide 

this by 2 and bring it into the prime octave we have 1.06666667, another familiar musical ratio.  

 

07.1
2

14.2   

1.003125
6666.1

07.1  , 
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These ratios, as before are the result of the prime comma, 
320

321 . Half of 2.65 is 1.325 

very close to 1.333333, missing by  

301.00628928
325.1

33333.1   

 

again, the same prime comma as the first, 
159

160 . 

Half of 3.16 is 1.58. This again is very close to 1.6, missing by 1.01265823 or the prime 

comma  

878481012651.01265822
79

80  . 

 

Half of 3.65 = 1.825, missing 1.8 by 1.01388889, produced by the prime comma,  

 

88891.01388888
72

73  , 

 

this latter being the first ratio that does not contain, as one of its members, an octave of 

5. In this instance the ratio contains an octave of 9 (9 x 2
3
). 

4.15 must be divided by four as it jumps to the third octave. 1.0375
4

14.4  . If we then let 

1.0375 be equal to 1 we obtain the following chart: 

 

Diameters I II III IV V VI VII VIII 

(6) 4.15 1.0375 1.0 4.0 80
83  above 30 15 

(5) 3.65 1.825 1.8 3.6 72
73  above 27 27 

(4) 3.16 1.58 1.6 3.2 79
80  below 24 3 

(3) 2.65 1.325 1.3333 2.6666 159
160  below 20 5 

(2) 2.14 1.07 1.0666 2.1333 320
321  above 16 1 

(1) 1.59 1.59 1.6 1.6 159
160  below 12 3 

 

 Column I lists the ratios of the ideal drumhead as given. Column II lists the same as 

they appear in the prime octave. Column III lists the common musical ratio that is closest to 

each. Column IV lists column III returned to the same octave as column I. Column V lists the 

ratios of the differences between either I and IV or II and III. In the first four nodal structures 

the even member of the ratio is an octave of 5. (80 = 5 x 2
4
, 160 = 5 x 2

5
 and 320 = 5 x 2

6
). The even 

member of the remaining structure (5 diameters) is an octave of 9 (9 x 2
3
). 

Column VI indicates whether the value in column I is above or below the 

corresponding value in column IV. What it is that causes these small but extremely precise 

commas is hard to imagine. Lord Raleigh’s assertion that this is caused by stiffness of the 

membrane does not seem to be correct as sometimes the sounding node is above the natural 

value and sometimes it is below. The problems in measurement that are usually experienced in 

these matters are caused by not assuming the principal tone (the tone one 'hears') to be 3. The 

principal tone is equal to the nodes of one diameter or four diameters. The fundamental is 

equal to the node of two diameters. 
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Column VII is column IV represented by integers. This is arrived at by multiplying 

column IV by 7.5. Column VIII is column VII reduced to initial overtone entry values (odd 

numbers). 

If we divide the first four values of VII (12, 16, 20, 24) by 4 we get the following: 
 

24 6 (3) 

20 5 (5) 

16 4 (1) 

12 3 (3) 

 

 This center column is the familiar six-four chord. This time it appears with a doubled 

fifth (3 and 6), which is just the way it would be normally used in actual composition. Consider 

just how basic the triadic structure is in the enharmonic matrix. 

 
3  

1 5 

If we examine the entire set of six diametric structures as they appear in the matrix we 

get: 

 
27 x 

x x 

3 15 

1 5 

 

This certainly lies within the confines of the scale structure composed of musical 

reciprocals of 135. It also comes very close to being the pentatonic scale. This offers the first 

support to my idea that the pentatonic scale is so ubiquitous because of the fact that we hear it, 

to one degree or another, in every sound we hear. 
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Recall the hierarchy of musical ratios as listed at the end of part 1. 

 

80

81
 1.0125 

24

25
 1.04166666 

15

16
 1.06666666 

9

10
 1.11111111 

8

9
 1.125 

5

6
 1.2 

4

5
 1.25 

3

4
 1.33333333 

2

3
 1.5 

1

2
 2.0 

If we list column VII as intervals we achieve:  

 

27
30  1.11111 

24
27  1.125 

20
24  1.2 

16
20  1.25 

12
16  1.33333 

If we consider those very tiny comma displacements as being substitutes for the 

simpler interval such a complete hierarchical structure supports the notion that the diametric 

nodes, in themselves, create the sound. Should this be true then the actual nodes of the 

drumhead replace the above structure.  
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Recall again the initial chart: 

 

Diameters I II III IV V VI VII VIII 

(6) 4.15 1.0375 1.0 4.0 80
83  above 30 15 

(5) 3.65 1.825 1.8 3.6 72
73  above 27 27 

(4) 3.16 1.58 1.6 3.2 79
80  below 24 3 

(3) 2.65 1.325 1.3333 2.6666 159
160  below 20 5 

(2) 2.14 1.07 1.0666 2.1333 320
321  above 16 1 

(1) 1.59 1.59 1.6 1.6 159
160  below 12 3 

 

There is a mathematical discrepancy between the first four columns and the last two. 

Columns I and IV would suggest that the node formed by six diameters is the fundamental (15 

in column VII). On the other hand columns VII and VIII indicate the node created by two 

diameters is the fundamental. Neither is the principal tone. If we bring column VIII into the 

prime octave we see that each value in column IV is higher than its corresponding value in 

column VIII by 1.06666. 

5.1
0666.1

6.1  , and this is more practical. It is usually assumed that the first actual node 

is one in which there are no diameters. I do not think that this is true. In every other nodal 

structure we have two equal masses ‘moving' in opposite directions. This is not true if there are 

no diameters. The fundamental is a result of, not a participant in the structure, and thus is 

created differentially.  

If we divide everything in the first four columns by 1.0666 we get the following: 

 

Diameters I II III IV V VI VII VIII 

(6) 3.890625 1.9453125 1.875 3.75 80
83  above 30 15 

(5) 3.421875 1.7109375 1.6875 3.375 72
73  above 27 27 

(4) 2.9625 1.48125 1.5 3.0 79
80  below 24 3 

(3) 2.484375 1.2421875 1.25 2.5 159
160  below 20 5 

(2) 2.00625     1.003125 1.0 1.0 2.0 320
321  above 16 1 

(1) 1.490625 1.490625 1.5 1.5 159
160  below 12 3 

 

This is more practical representation. The fundamental will be created differentially so 

we can consider VII and VIII to be the structure of the tympani. To illustrate just how small 

these displacements are here is a chart of the actual as opposed to the ideal overtones of a 

tympani sounding a low F.  
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The tone that is heard, 80Hz, is the third overtone thus the fundamental is 53.3333333. 

 

Matrix number Actual Pitch Ideal Pitch 

15 207.5 200 

27 182.5 180 

3 158 160 

5 132.5 133.333333337 

1 107 106.666666667 

3 79.5 80 

(1) 53.3333333 53.3333333 

 

Another way of looking at this is to start with the audible of principle tone. In this case 

the actual fundamental would be 53.6687631 and the chart would be thus;  

 

 

Matrix number Actual Pitch Ideal Pitch 

15 208.805031444904 200 

27 183.647798740699 180 

3 158.993710690578 160 

5 133.333333332289 133.333333337 

1 107.672955974 106.666666667 

3 80 80 

(1) 53.6687631 53.3333333 

 

In either case the pitch differentials are slight, especially in the lower partials. 

Experiment is necessary to see if the ideal pitches produce the same basic sound as the actual 

pitches. The differences are small enough that is quite probable that the sounds will be 

basically the same. The actual pitches should produce the ideal sound, something that may be 

very desirable.  

 The same type of patterns should appear in all other sounds. Another set of patterns 

shows this to be the case. 

 

CONSISTENCY IN THE DIAMETRIC STRUCTURES 

 

           As a musical tone deteriorates the upper partials go first. They require and expend more 

energy. We can assume that the bulk of the sound will be maintained by some form or other of 

the six-four chord 
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In a test devised some years ago by Frederick Saunders, Carleen Hutchins and Alvin 

Hopping, brass plates were cut in the shape of the body of a violin. In the violin, the top and 

bottom of the sound box behave, collectively, like the drumhead of a tympani. These brass 

plates allowed them to test the Chladni patterns of the violin just as with the drumhead.  

As with the tympani, six nodes were listed.  

 
(6) 1600 

(5) 780 

(4) 520 

(3) 435 

(2) 340 

(1) 260 

As with the tympani the observed values miss being simple musical values by small, prime 

commas. 

 

 I II II IV V VI VII 

(6) 1600 6.15384615 6 1560 above 39
40  8 

(5) 780 3 3 780 x x 9 

(4) 520 2 2 520 x x 6 

(3) 435 1.67307692 1.66666 433.33 above 260
261  5 

(2) 340 1.30769231 1.333332 346.66 below 51
52  4 

(1) 260 1.0 1.0 260 x x 3 

 

   Again, the values in column I are frequencies given by the authors. Since 260 is the 

principal tone (3) let us divide column I by 260 creating column II. As before column III lists 

very close basic music ratios and represents column III multiplied by 260. Column V lists the 

direction of the discrepancy. Column VI lists the prime comma involved in each discrepancy. 

Column VII is column III multiplied by 3, giving us the smallest series of integers that are 

possible (unclouded by commas). Once again we see that the first four notes are the six-four 

chord.    
  The two remaining nodes are both octaves of nine. In the matrix the structure it would 

be thus: 

 

 
9  

3  

1 5 

 

As with the tympani the principle tone is 3. Since the differences between the actual and 

ideal pitches are formed by prime commas it may be that the ideal tones will work. If this 

proves not to be true it will be no problem to alter the ideal tone so as to produce the actual. 

This will be a main goal of initial experiments. 

Again it leans toward the pentatonic. Can a tone as rich as that of a violin be formed 

from such a simple basic structure? The previous example uses a metal sheet in the shape of a 
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violin so tests on an actual violin will be needed but we can speculate that the some form of 

this simple structure would indeed create the sound of a violin. 

Remember that apparent sounds of both the violin and the tympani are made up of a 

very large complex overtone pattern. We can expect that the structures that create the sound of 

most instruments will be composed of structures no more complex than those of the tympani 

and the violin. 

Laser holography allows us to produce the ‘Chladni patterns’ of any instrument or, for 

that matter, any object. 

 It was stated in Part I that it is not the air rushing in and out of the finger holes that 

produces the airborne carrier wave, that which we usually refer to as sound. It is not the 

movement of the string or the blade of a tuning fork nor the sloshing of the air back and forth 

in a wind instrument that creates the sound. This oscillation must create another structure that 

actually is the interface to the air-born carrier. 

The length of the bore itself in brasses controls the pitch. Let us differentiate these by 

correctly calling the movement oscillation and the structure that the movement creates, 

resonance. There can be no doubt that this resonant structure runs the entire length of 

woodwinds as well, regardless of the length of the oscillation (the addition of a bell affects all 

of the notes). All sound is created by structures that are very similar. It would appear that all 

musical sounds are formed upon the basic six-four-chord structure; most likely all sound is 

similarly structured. 

A certain amount of sound is transmitted in directions other than perpendicular to the 

circular plane. We can assume this is a sympathetic response to the diametric structure itself. 

These structures can be very powerful. 

The diametric structure runs the length of the bore of a wind or brass instrument and the 

body of the instrument itself responds to this structure.  

We can now go back to the tympani and draw a few conclusions, 

 

DIAMETRIC RESONANCE 

 

 At first glance it would appear that the diametric structure on the tympani is formed in 

the drumhead, as are, no doubt, the circular nodes. The elastic force being applied (which is 

considerable) is in a direction that is directly opposite to the direction of the diametric nodes. 

We must always be aware that while the techniques used in eliciting the Chladni 

patterns do indeed show us the basic nodal structure of the vibrating body, this process is 

considerably different than what happens in a naturally sounding tympani. It likely that things 

happen in one mode that would not happen in the other. The circular modes in a natural 

sounding drum are caused by the oscillation of the drumhead and, as with all oscillations they 

contribute nothing significant to the sound. All drums are rather unique as the drumheads 

behave as both the vibrating body and the resonant structure that actually interfaces with the 

air. 

On the other hand, the fact that an arithmetic, or linear progression of equal divisions of 

the mass of the vibrator produces a series of non-linear frequencies that is common to both the 

induced and natural modes. The frequency ratios are consistent as well. 

The type of shock wave created by the undulations of the drumhead would move in this 

opposite direction. What these shock waves actually are is of no importance to this discussion, 
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thus shock wave is as good a term as any. It is quite likely that the oscillation of the drumhead 

has little effect on the either the airborne carrier or the air within the drum itself. 

The design and construction of the tympani is, as previously mentioned, remarkably 

consistent. This would lead us to believe that the sides of the drum are much more involved 

with ensuing processes than merely to provide the necessary shape. If shape were all that 

mattered the drum could be made of Plexiglas, and this is not true. 

The metallic structure that we might call the 'kettle' of the drum must act in much the 

same way as the steel frame of the piano or the body of a brass instrument, that is, as a conduit 

to the resonator. This makes the resonator, that which creates the airborne carrier, the air-space 

within the drum. It is, in fact, a rather unique form of cylinder. The head of the tympani serves 

as both ends of this cylinder. The shape of the kettle is designed to throw back a conjugate of 

the input of the drumhead. Its particular shape allows it to accept the tuning a thus the 

diametric structure of any fundamental frequency. 

We can deduce from observation that the resonating structure that forms in an air filled 

cylinder is much more powerful than the same happens in a solid. The area of the cross section 

across the end of the bell of a clarinet is much smaller than the area of the tympani or the 

sounding board of a piano. It would appear that the area of the interface has as much, and no 

doubt more, to do with the loudness of the sound than the initial available energy. 

The logical place for this diametric structure to form (remember that the diametric 

structure is always three dimensional) is in the air filled cylinder. The tympani is actually a 

muted wind instrument. All drums are. The patterns we see on-the drumhead are created, for 

the most part, sympathetically, i.e., it does what the air within it does. 

It would be important to remove the kettle from the ring stretching the drumhead and, 

while maintaining the tension, again induce vibration into the drumhead magnetically. If the 

diametric nodes do not appear we can be reasonably sure that the diametric structure forms in 

the air chamber. If they do appear at all it may be that they are created by other things, such as 

the ring itself. Other experiments will confirm the reality of the structure formed within the 

tympani. 

Considering the awesome amount of energy held in a piano string it is odd that without 

the heavy body of the piano as sympathetic resonator the vibrating string can scarcely be heard 

at all. The tension in a tuning fork is inherent in its shape and the tuning fork suffers the same 

fate as the string, it can scarcely be heard without a resonator. 

If we assume that all sound is formed by the diametric structure, which is always 

longitudinal in nature, this seeming paradox between available energy and the sound we hear 

is easily explainable. The areas of interface that feed the energy into the airborne structure in 

either the string or the tuning fork is extremely small. As we have seen solids such as steel are 

much less efficient in the structural transfer to the airborne carrier than structures that form in 

the air. This makes the area of interface of strings and tuning forks react very poorly indeed. 

Even in some woodwinds and all brass instruments the bore that allows the oscillation 

is too small to produce the sound we desire. In this case a bell is added. If thought of as an 

extension of the long diametric structure a very simple explanation offers itself. Because of the 

nature of the diametric structures these structure must adhere to the principals of 

hydrodynamics.  
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The drawing is a longitudinal cross section of a cylindrical bore with a bell, such as 

exists on a brass instrument. Let us assume that the volume of air with the instrument itself is 

replaced with a fluid. If a force is applied at A in the direction of the arrow we know that the 

force per square inch of a transverse cross section at C is equal to the force per square inch of a 

transverse cross section at A.  The total amount of energy is proportionate to the ratios of 

various cross sections, i. e., if the area of a transverse cross section at B is four times that of 

one at A or C, the total amount of the force is four times as great. 

Considering the chamber once again filled with air let us assume a finger-hole at D. 

We know from observation that the oscillating structure will form between A and D. The 

volume of air from D to C remains relatively undisturbed and yet the interface to the carrier is 

a B. The structure found across a transverse cross section of B must be a continuation of a 

structure that exists within the cylindrical bore. 

We can only assume then that the oscillatory phase of this phenomenon creates a 

totally different structure that runs the length of the bore regardless of the length of the 

oscillation. It would also be logical to assume that this structure is diametric since the direction 

of the energy is longitudinal. This diametric structure is governed by the principles of 

hydrodynamics, i. e., in a resonating structure a gas behaves as if it is a fluid. 

The air created resonance is more common that one would suppose. It is the air space 

in violins, violas, cellos, guitars and all similar instruments that is the primary interface with 

the airborne carrier. The F-holes are not cut into the precisely fashioned sounding boards for 

decoration. The cumulative area of the F-holes in a violin is at least as much as is that of a 

woodwind. Even a loudspeaker feeds into an air filled box. Without this air filled space the 

loudspeaker is much less efficient. The diaphragm of the speaker is invariably made in the 

shape of a cone and such the structure that interfaces with the airborne carrier still forms in an 

air filled chamber. 

While the string develops diametric structures longitudinally just as does any vibrating 

body, the process of transferring the structure to the resonator is different. The only points the 

string touches are the tuning pins on a piano. On a sting instrument this primary contact is 

made between the edge of the string and the bridge. No contact is made through the powerful 

transverse cross section but rather on the side. This would seem to be a very inefficient method 

of transferring the structure and indeed, only about two per cent of the energy injected into the 

string of a violin actually creates the diametric structure. The same is true for a tuning fork. 

When the fork is placed on a resonator only one point of the end (usually rounded) of the fork 

comes in contact with the resonator. 

It is usually assumed that the lost ninety-eight percent of this energy is turned into heat. 

The energy injected by a single stroke of the bow would be relatively small. The cumulative 

A

D
C

B
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energy from an entire complex piece, such as a Paganini Caprice would be quite considerable. 

Since wood conducts heat very poorly we would expect that even in one such piece something 

in the violin would get fairly warm. This does not happen. 

It is more likely most of this ninety eight per cent of the energy is never transferred as 

the transfer is made through the side. No doubt some of the energy is turned into heat but most 

likely it, as with the energy that creates the sound, is small. It is this ability of the diametric 

structure to be detectable through the side that may prove very useful in analyzing these 

diametric structures. 

 

THE SEQUENTIAL STRUCTURE 
 

This concept of structural energy being 'spilled' from a diametric resonance is not all 

that alien to that which is already accepted. Complex equations exist to calculate the amount of 

energy that spills from a naturally sounding horn, for instance. What the diametric nodes of the 

tympani show is that there are quite likely no more than six precise, discrete frequencies that 

the tympani can sound. Whatever energy it emits it does at one of these frequencies. The 

impulse structure that initiates everything may be more complex than that of the structure that 

comes from the device that strikes it. The size of the striker for any such instrument is critical 

to the quality of the sound. This is true for drums, xylophones, glockenspiels and cathedral 

bells. If the mass of the striker does not form a simple ratio with the mass of the target the 

amplitude and quality of the sound is diminished. 

This choice of available frequencies is further reduced by the fact that the higher nodes 

disappear rather quickly. Thus the bulk of the duration of any sound (even a sound so short as a 

tympani) is made up primarily of the first four nodes, which, most likely will be a six-four 

chord. Musical sounds must be composed largely of these four nodes. The question is how such 

a simple structure as a six-four chord could create the multiplicity of tone colors we experience. 

This same six-four chord comprises the notes of a bugle, and from the bugle we get a 

clue to physical reality of the nodal structure of the tympani. The most salient feature of the 

bugle is that one, and only one, sound can be sounded at any given time. Simultaneous sounds 

are a physical impossibility. The same must be true of nodal structures. Only one diametric 

structure can form at a time. Thus the input that creates the sound wave is not only restricted to 

a few frequencies but it is sequential as well. This explains many things. 

Now it becomes easier to see how so few inputs can create such a variety. The number 

of tunes one can create, even with as few as four inputs, is vast indeed. In a later section we 

shall see how this sequencing explains the ability to transmit amplitude in a non-compressible 

medium such as steel or water. 

This raises a serious question. Harmonic analysis shows more, and often many more, 

sounding overtones than those we would expect from the diametric patterns. We can expect 

overtones higher than six even though the entry structure may not exceed that number. 

Additive tones have been mentioned in many theoretical writings and that is probably what 

causes the higher partials to form. The fact remains, however, that the diametric nodes indicate 

a very restricted number of possible frequencies the drum can sound. Even if we were to add 

the circular and hybrid nodes the number remains very small. The drum cannot create its 

overtone structure by arithmetic progression of all of the overtones, as it is incapable of 

producing most of those frequencies. 
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Here we need a special kind of testing and the tympani would seem to be a good place 

to begin. The face of the drum presents a large area and the pitches involved are relatively low. 

We must observe the topology of the drumhead as it interfaces with the carrier. Several 

possibilities exist and this will be the thrust of the initial experiments. We must perform the 

experiments as if the airborne carrier does not even exist.  

We can assume, since the matrix structure includes 27, that the implied structure is the two-

column structure generated by 45. 

 
27 x 

x x 

3 15 

1 5 

 

The implied structure is 135 and experiments that incorporate that value would be 

desirable. 

We must sample the topography of the drumhead exactly 135 times the fundamental. 

This value must be high enough to allow for the fact that the series does not appear in the basic 

matrix form, 3, 1, 5, 3, 27, 15, but rather in scale form, 12, 16, 20, 24, 27, 30.  

Let us assume a low G of 99Hz. The actual series would then be: 

 

 
 

We should discover a basic pattern that varies from the beginning to the end of the 

actual sound. It is this sequence of diametric frequencies that is responsible for the 

phenomenon we call tone color, or timbre. 

Each instrument will have its own distinctive diametric sequences. Poor sounding and 

beautiful sounding versions of the same instruments should produce detectable variations in a 

common basic pattern. This basic pattern will point to an ideal structure that is impossible to 

achieve with acoustical instruments. Electronically it should be possible to actually sound the 

ideal structure of any type of instrument. 

Since we know what we are looking for it should not be difficult to physically analyze the 

sequential structure of any instrument, including, the voice. 

 

THE CARRIER STRUCTURE 

 

Webster defines sound thus: 'mechanical radiant energy that is transmitted by 

longitudinal pressure waves in a material medium (as air) and is the objective cause of 

hearing.' 

This does not go against anything thus far presented. The diametric sequences are 

indeed longitudinal. We must pause a moment on the term 'pressure waves' (this being 

synonymous with 'compression wave'. We shall define compression as 'an increase in density 

effected by a reduction in volume.' This is rather obvious in a gas. 

We have already seen that a gas, such as air, can behave much like a liquid in that it 

moves as a body, such as in the oscillation phase of vibration. It can also behave as a solid in 
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that it can produce powerful longitudinal structures that are diametric in nature. In the airborne 

carrier wave we see a gas behaving as a gas. 

This compressibility that so characterizes gases, and is unique to them, is what makes a 

gas a gas. If the diametric structure proves to be a constant occurrence (and, indeed, all sounds 

are generated by a diametric structure of some sort or another) it would certainly present a 

different possibility of explaining the transmission of radiant energy longitudinally. 

Fortunately, if our goal is to produce a music machine, it does not matter how a resonating 

body creates diametric nodes. All that matters to us is at what frequencies do they form and 

their sequential order, and this will be largely determined empirically.  

It is also quite obvious that the diametric structures and the airborne carrier wave are 

structurally and functionally completely different. In most likely every case it is the sounding 

of the diametric nodes that creates the airborne wave. Consider then what the airborne carrier 

actually does. It picks up the structure at the interface across the proper section of a resonating 

body then physically transports that information across a given space, depositing it on the 

eardrum. This carrier wave neither generates nor interprets the sound, it merely carries it, and 

yet, it is this structure we nearly always refer to when we use the term 'sound'. 

The more we look, the more places we will begin to see these diametric structures. 

When an object falls into a liquid a circular corona is formed. The corona retreats and a true 

diametric structure forms. There is a beautiful Edgerton high-speed film of a drop of milk 

where the diametric structure formed is clearly twelve equal, pie shaped sections. 

This powerful structure is what creates the concentric rings. These rings transmit the 

information of the diametric nodes by periodic changes in the resulting waves. The waves 

carry the information created by the impulse function and the resulting crown-like structure 

behaves much as does the airborne carrier.  

It is most likely that the sound of the splash is created by this diametric system. The 

diametric structure in a splash appears very briefly. Most high-speed photographs miss it 

entirely. The sound of a large splash most closely resembles the sound of a cymbal. Both are 

circular, which is indeed the musical shape. Both get their complex, 'noisy' sound from the 

abundance of higher frequency inputs. Both are pitched. 

Because of its complex sound we can expect the sequence of the diametric nodes of a 

splash to be composed of fairly high input frequencies (relative to the fundamental). However, 

in spite of this complex input the ring itself appears, to a casual observer, as virtually 

sinusoidal. 

The reason for this is quite simple; water is viscous. It simply cannot respond to the 

diametric patterns in the same time frame in which these patterns are generated. 

This causes a lag and thus various groupings of the diametric nodes sound 

simultaneously. This, as we shall see, considerably changes the nature of the structure. As a 

result of this change the ring is a 'smoothed out' version of the diametric input. It is not that 

anything is really lost. All of the information that is in the diametric structures is in the ring 

itself. A closer look at the shape of the wave in the ring would show a wave that is anything 

but a simple sinusoid. 

The airborne carrier is, in many ways, quite similar. Both are generated by the same 

diametric structure. Both transmit energy by a periodic and reciprocal change in the density of 

discrete volumes of a given medium (in this case, air or water). While the ring appears to 

undulate actually the only real motion is rectilinear. It can only move up and down. The air is 

exactly the same. Whereas the ring in the water is a gravity wave the airborne carrier is a true 
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compression wave. The molecules in the air move, for the most part, rectilinearly, in one 

direction when the air is compressed, the other when it is decompressed. 

Whether or not true compression waves form in fluids or solids is an argument that 

fortunately we can avoid. When we state that an airplane is traveling at the 'speed of sound' it 

is the transmission rate of this airborne carrier in normal atmospheric conditions to which we 

refer. Virtually all attempts at mechanical analysis use this carrier as the subject of the 

analysis. 

As with water, air is viscous. Air is of sufficient viscosity so that it takes about six full 

cycles at middle C (264Hz) to initiate the structure. This lagging effect is known as hysteresis. 

Because of the fact that the frequencies of the diametric nodes must be sounding 

sequentially, we can expect to find little or no hysteresis effect in this phase of sound 

generation (the nodal structures). However, when these patterns are fed to the air at least six 

consecutive periods of the tone at middle C (a period being defined by the length of the 

fundamental) are made to sound simultaneously. 

The immediate result of making a horizontal,' sequential structure into a vertical, 

harmonic one is the emergence of a differential structure. This structure is completely absent 

in the diametric resonance. Without experiment it is impossible to determine just how complex 

a pattern will be necessary to create a given sound. It may be contained completely within one 

period. It is not likely to go more than six. 

This very complex differential structure is what we observe when we feed the result of 

a microphone (reacting to the airborne carrier) to an oscilloscope. The patterns that created this 

'sound wave' are still present but they are virtually incomprehensible. We then further 

complicate things by considering this to be a linear phenomenon. Any 'curved lines' present in 

an oscilloscope reading are caused largely by the hysteresis process inherent in the air itself 

and, to a lesser degree, to the hysteresis present in the magnets of the microphone and the 

oscilloscope itself. The oscilloscope is designed to produce a linear representation of the 

information fed to it. If it is fed a series of discrete points the oscilloscope connects the points 

and we are presented with a linear display of a definitely non-linear phenomenon. 

Nor will direct analysis of this analog waveform yield any clues as to which of the 

sounding tones are from the initial input and which are differentially produced. Whether or not 

the patterns themselves can be deduced from the airborne wave, which we might actually call 

an amalgamated wave, must await experimentation. It may be possible to create an algorithm 

that will allow us to extract this information from the wave we see in an oscilloscope. 

It seems counterproductive to use an infinite series to analyze a structure that is both 

discrete and finite. This structure is easily assessable mathematically. The concept of the type 

of thinking that accepts the sound wave as an analog structure manifests itself mechanically is 

a process known as digital sampling. 

The main problem structurally with sampling is that this sampling imposes a number 

system upon the structure that has nothing to do with the mathematics of the structure itself. If 

our goal is to produce music then the wave we see in the oscilloscope is not what we are after. 

It is true that ultimately, if it is to be heard, an airborne carrier must be generated and 

sooner or later we will be dealing with a very complex differential wave structure. We must 

not forget that this very complexity is caused by rather severe hysteresis induced by the 

viscosity of the air itself. When sound propagates in water or steel it does so as diametric 

frequency patterns that are much less affected. 
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We get this 'wave form' by changing the variations in the pressure of the airborne 

carrier into corresponding variations in voltage. These variations in voltage are usually thought 

of as being analog in nature. It is this particular notion that has given rise to the technique of 

digital sampling. If the sampling rate is set high enough it is true that a recreation of the wave 

seen in the oscilloscope can be created that is indistinguishable from the wave in the 

oscilloscope, however that wave is not what we want. 

If, on the other hand, we consider this complex wave to be the sound it would be logical 

to assume that if we feed the fluctuations in voltage back into a transducer (similar, in many 

respects, to the one that changed the pressures into voltages initially) we should excite a 

structure in the air similar to the one that existed originally. This is the thought behind all 

electronic sound recording and reproduction. 

In spite of many years of exquisitely sophisticated research involving many truly gifted 

people a practical loudspeaker cannot be made that sounds 'real'; sometimes very good, but not 

real. This has nothing at all to do with the electronics involved.  

The speaker is a musical instrument and its evolution, like most musical instruments, 

was directed largely by trial and error. One thing nearly all speakers have in common is an air 

space. It is in this air space that the diametric nodes form that actually interfaces with the 

airborne carrier. As with all instruments this air space must get the patterns themselves from 

somewhere. (The patterns that form in the sound box of a violin originate in the string, etc.). 

A diaphragm excites the diametric pattern within the air space of the speaker. This uses 

magnets and thus the structure is further corrupted by hysteresis. An even bigger problem is 

caused by the fact that the information fed to speaker is the result of an airborne carrier, and 

thus the signal is already corrupted. The speaker corrupts it again. This is why public address 

systems do not create a result that sounds real. 

So long as we have the patterns we can inject the energy directly into the sides, just as 

the oscillation itself does. We will not use anything that vibrates, such as a diaphragm. These 

discrete patterns can be fed to a resonant chamber by much simpler methods. 

This opens the door for many fascinating possibilities. We could, for instance, feed the 

patterns into the sound box of a violin. The input would be, of course, perfect, and the violin 

body would respond in kind. The possibilities of this sort of thing are virtually endless. 

Once we know the patterns, interfacing them with the airborne carrier should be the 

easiest part. 

THE PATTERNS 

 

This interface to the airborne carrier is the only mechanical part of the proposed 

device. It is possibly the most crucial. Even if we were to construct all of the necessary 

electronics correctly it would all be meaningless if we were to feed the results into an 

oscillating body. 

The shape and construction material of these speakers will have to be determined 

empirically. There are too many factors involved to allow us to even speculate at this point. 

We can be specific about exactly what must be accomplished. A precise, discrete series of 

frequencies must be injected accurately and efficiently into the sides of a resonating chamber. 

The shapes of the air-to-air interface areas of musical instruments are a result of the 

nature of the instrument. A simple circular area should suffice for any input structure. 

While it is longitudinal waves we are after it is much easier to inject the energy via 

transverse waves. Most likely something like this: 



 103 

 
If we use four separate energy inputs of equal power and arrange them as in the 

drawing, that is, two opposing pairs of inputs arranged on the perpendicular. Each opposing 

pair must be 180 degrees out of phase and the pairs themselves must be in phase with each 

other. 

This would prevent any oscillation from occurring. The only structure that can form 

will be longitudinal and it will be created by the same patterns that are being injected. The 

proper diametric structure should then form in the air space of the bell (or whatever). This will 

then interface with the air we should have our 'sound'. Feeding the information from this 

device into a standard speaker (that is, one with a vibrating cone, or membrane) would be a 

waste of time. This is critical. 

Let us concern ourselves now with the patterns themselves. It is these that we shall be 

creating electronically. It can be argued that all sound is product of an assemblage of diametric 

patterns.  

The pitch of a musical tone is always clearly defined and thus we can be reasonably 

sure that all of the elements of any given pattern will line up or come together at the beginning 

of each period of the fundamental. It may be possible that at least some of the patterns will be 

appear to be extra-periodic, that is, the length of the pattern extends beyond the length of a 

single period. The pattern, in this case, would then be segmented and thus would be formed by 

a series of complete periodic sections that together would create a larger pattern. 

This thought is supported by the fact that in many tones the amplitude of the various 

overtones does not remain constant while the tone itself is sounding, even if the input to the 

tone is consistent. The same thing occurs when the tone is allowed to decay. In the decay of 

any tone we can see from harmonic analysis that the amplitude ratios between the various 

overtones is not constant. All such decay is non-linear. We can therefore assume that these 

patterns will also be structural and strive for certain ideals of structure. 

Let us consider another very fascinating aspect of pattern-generated sound, which is 

speech. We will consider singing to be the same, structurally, as speech and thus anything in 

this discussion that refers to speech also refers to singing. 

There is a duality in speech that is perplexing, considering two simple facts, one: a 

vibrating body can create one, and only one pattern at any given time. Two: the ear can receive 

one, and only one pattern at any given time. 

As to the first, the throat and voice box apparatus create speech, which in itself, is an 

instrument. It makes one interface to the air through the mouth (or, much more inefficiently, 

through the nose). If two people say the word "the", we hear two distinct things. One: The 

timbre of the particular voice (this sounds like John, that like Mary) no matter what particular 

word is being said. Two: Even among widely differing timbres we recognize, in each case, the 

word "the". 
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In order for the single voice structure to produce two distinct functions two independent 

pattern structures must exist. We can expect the voice pattern to be longer than the one that 

produces timbre. Periodicity is of not as great an importance in word patterns as the timbre 

provides the pitch. This is why the word structure system continues to work when the more 

focused and powerful sounds of the singing voice are used. 

The human mouth, when fully open, presents a formidable area of interface to the 

airborne carrier. It is quite necessary to keep this area of interface as consistent as much as 

possible. Unfortunately, the creation of speech is caused by the physical shape of the 

resonating chamber in the vocal structure (the formant structures) and is inconsistent with 

keeping the mouth open for many sounds. One or another of these vocal dualities must be 

sacrificed. This is the singer’s greatest problem. In a device as described by this paper such a 

problem will be non-existent. How the voice actually creates these patterns is of no importance 

to the generation of sound. As with timbre itself we have only to find out what they are. 

Once an effective technique for accurately measuring the diametric patterns in speech 

we will be able to extract the absolute pattern for the word "the" with any accent or intonation. 

We can apply this to any sound we wish, even a perfect Stradivarius. All of this is done and 

mixed in software. In the final step all of the information is fed to the transducer as one 

pattern. Even the amateur will have at his disposal the finest 'singing' voices one can imagine, 

and as many as he wishes. Such voices will never tire, never sing out of tune and never create 

a timbre that is less than perfect. 

 

THE CIRCUIT AND ITS USES 

 

The first thing we will need is a topological look at the surface of the tympani as it 

goes through the production of a sound. Suppose we let the drumhead be tuned to low F (88Hz) 

 

 
 

Since this is the third overtone the fundamental would be 29.3333Hz. We would want to 

detect any patterns falling within the enharmonic matrix and it appears that the enharmonic 

rectangle defined by 135 will be sufficient If we multiply the fundamental by 135 we will need 

3960 topological 'pictures' per second. This low number will allow us great latitude in testing 

the drumhead.  

We must initially test the actual topography of the drumhead in order to establish 

exactly which patterns do appear. I propose that only the diametric patterns will actually 

appear but this must be established empirically. If the tympani proves this out we can be 

reasonably sure circular and composite nodes will not be part of the structure that creates a 

sound. 

We must then establish the correlation between any given pattern and the sounding 

frequency. This should prove to be the same as we discovered in the Chladni patterns. If 

proven in the tympani we can assume this to be consistent with any instrument, and, in fact, 

any sound. We will then have but to seek the frequency patterns of the nodes. We will have a 

distinct advantage of knowing exactly where nodes and antinodes will appear 

In order for the diametric nodes to appear the entrance of the energy must be 

off-center. This off-center point forms a line with the center that always bisects one of the pie 

shaped sections 
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 In winds and brasses the plane of the reed will bisect the pie-shapes section as shown 

by the dashed line. We can expect the voice will divide the section across the plane of the lips, 

as with the brass. 

Because of this the patterns would never be convergent. Once we established the 

bisecting line we will know exactly where each diametric pattern will fall on the body or end 

of the instrument itself. 

The sound of a stroke on a tympani is very short so it will present no special problem to 

detect and record the entire sound as a series of patterns. Patterns that create timbre will 

probably cycle once each period and the length of the sound is certainly less than a second so 

we can expect to be studying the change, period to period, of less than 88 patterns. 

If we multiply these tympani nodes by the enharmonic matrix we get the following, 

 

792 3960 27 135 

264 1320 9 45 

-88- 440 -3- 15 

29.3333 46.6666 1 5 

  

This is achieved of course by multiplying the original matrix by 29.3333.  

Thus the patterns of the tympani sound a low F should be made up of the following 

series of frequencies. 
792 3960 

264 1320 

-88- 440 

29.3333 46.6666 

 

The number of actual frequencies that make up the sound of a tympani stroke is quite 

small and easily manageable. Once we have this series we can do many things with it. 

First of all we can feed it back into the tympani itself, bypassing the membrane. If this 

is correctly done the diametric structure should form, just as with the original sound. The 

airborne carrier will form in the same manner and the wave will affect the eardrum in precisely 

the same manner. The ear will be unable to detect a difference between the original sound and 

the reproduced sound because there will be no difference. 

This modest test and experiment will virtually prove many of the premises of this 

proposal. Just on the tympani alone we can explore many things. The difference between a soft 
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stroke and a hard one on the same pitch will mean a distinct change in the pattern structure. 

The distance from the center that is stuck by the mallet will alter the patterns.  Raising or 

lowering the pitch will also change the patterns. By the time we go on to other instruments we 

will have a pretty good idea of what we are looking for. 

 

THE ARRAY OF THE FREQUENCIES 

 

The matrix is an array and as such it is very easy to modify all of the values of every 

number in the array (like multiply them all by 135). All the values of the array are divisible by 

3 and 5 and the result will always equal one. Once this multiplication has taken place the array 

will now be bounded by 311 on the x-axis and 55 on the y-axis. Simply put all of the matrix 

numbers can be created with a divide-by-n counter with a modulo of 3 and another with a 

modulo of 5. 

Multiplying the matrix by 135 allows for the pattern structure that will be needed to 

create the timbre of any given pitch. For instance, if we wish to sound the center of the matrix, 

which is 2025, we would ‘aim’ at 273375. That value would allow for the array that provides for 

the input of the patterns. 

  

54675 273375 

18225 91125 

6075  30375 

2025 10125 

 

If we were to choose 10125 as a value to be analyzed we will find the it is created by 

four threes and three fives (3*3*3*3*5*5*5 = 10125). We will write this as 4.3. Every number in 

the matrix can be designated in the same fashion. The list of these codes is all we need store or 

access. The program merely has to feed the output of the system clock into a divide by 3 

counters four times and then through a divide by 5 counter three times. The result, since it 

formed directly on the clock frequency (which should be as fast as possible) will lie very high 

in the potential acoustic system. The result is looped through the divide by 2 counter until the 

desired frequency is achieved. All of this will take less than a nanosecond. The routines are so 

elementary that they will be written in Assembly Language. In such a case they will be 

virtually invisible, running at today’s clock speeds.  

Actually this description is useful for clarity but in practice we will use simple counters 

in a design that has been created. This will require no modifications such as octave shifts.  

This method allows us to extend the enharmonic matrix as far as we wish. I can’t help 

thinking that when we go higher in the matrix interesting things may be found that we are as of 

now unaware.  

The function of the ear tells us that in the digital world, volume is a function of more 

signals per unit time. The ear responds to an increase in amplitude by sending more discrete 

signals per unit time on the various nerves. The sound generator will create any sound by a 

very complex set of instructions that do nothing but select numbers from the matrix codes at 

predetermined time intervals. 

We state that a crystal oscillator pulses two billion times a second but the second is an 

arbitrary choice. It defines the rate of speed of the pulses, nothing more. The period, on the 

other hand, can be anything. 
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 We shall assume the period be 553,584,375 pulses in length. We will call this the 

Enharmonic Period and abbreviate it EP. It can be used with any clock frequency and the 

length of the EP will be EP
IP

 5553,584,37  where IP is the input frequency. Regardless of 

how many different divisions this EP is subjected to it will never suffer even the slightest jitter. 

Everything will always fit. We will do all of our dividing directly into the clock frequency 

itself. It can then be brought down into the acoustic world where it will be, for all intent and 

purpose, ‘perfect’.  

This device is not tied to the input in any way. No matter what the input frequency is 

the device will produce a perfect breakdown of the enharmonic matrix. A crystal oscillator 

whose output can be varied will give us all the control of pitch we might desire. These outputs 

will not only drive the generator itself but will drive the devices that will be necessary to find 

the patterns initially.  

The fact that the computer developed, not for the undemanding needs of music, but 

rather for the insidious, myriad calculations required by such things as differential calculus is a 

definite plus for the design of this machine. Consider a concert pianist sailing through the CG 
minor Etude of Chopin, just about the virtual limit to notes per second that can be played. Our 

pianist is playing about ten and the effect is, to say the least, breathtaking. In between each 

note a 2Ghz clock will beat two hundred million times. This will allow us to write programs in 

a high level language that can be executed between each sounding note. This will allow us to 

modify the ideal partials so as to produce the comma modified structures we see in the 

‘Chladni patterns’ of the various instruments should that become necessary. 

 Any given pattern will require a certain amount of data to define the necessary 

parameters the circuit needs to create the pattern itself. The pattern of a tone changes in 

response to a change in pitch. It also changes in response to a change in amplitude. Both of 

these can be easily calculated provided the processor has at least two reference points in each 

case. 

Various types of decay will be programmable and achieved by alterations of the input 

patterns. One of the really difficult things for a synthesizer to achieve is what is known in 

music as an attack. Attack is the result of the impulse function necessary to initiate any sound. 

Digital sampling, which cannot produce a sound that is real, is even more ineffective when it 

attempts to synthesize an attack.  

 

 

USES OF THE ARRAY GENERATOR 

 

Strictly speaking music is a nested system. Like the great Samsara of Buddhism where 

the cycle of existences revolve around the human experience the music system revolves 

around the tone. The structure that creates the timbre of the tone and the structure that 

organizes it into musical pieces is the same in both cases. 

 Initially we have patterns consisting of discrete frequencies. Conceptually these 

patterns replace the now held notion that a tone is the result of a fundamental plus its overtones 

(usually sequential). This overtone structure we see in harmonic analyzers is a product of the 

airborne carrier and appears because of the nature of the air and has, in itself, nothing whatever 

to do with the creation of the structures themselves. It only serves to modify them. 
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It is quite possible that the middle ear developed just to remove this excess structure 

imposed upon it by the carrier. Thus the patterns that hit the Organ of Corti are, for the most 

part, exactly the same as those that appear in the original vibrating body. Studies have shown 

that the nerves that lie on the Organ of Corti in the cochlea transmit their information to the 

brain as discrete, non-linear pulses. As far as the cochlea is concerned the complex overtone 

structure that we see in the oscilloscope of the airborne carrier most likely is created by the 

nature of the air. What the brain actually does with all of this information is something else. 

The patterns are all we need. What we actually perceive is a 'colored' tone. While the 

pitch may be the same the ear can easily recognize an oboe, a flute, a trumpet or Walter 

Cronkite. 

The act of composing music consists of arranging these tones into various vertical and 

linear patterns. The choice of frequencies used in composing music is governed totally by the 

enharmonic matrix, just as are the patterns that create the timbre of the tones themselves. 

These in turn create differential structures that relate ultimately to one fundamental. 

The studies of the Chladni patterns appear to indicate that the fundament of any tone is 

not actually sounded. The fundamental and the second overtone must be differential tones 

created by higher sounding partials. If the fundamental is sounded (as is done in all current 

synthesizers), the very sounding of this fundamental will corrupt the timbre of the 

differentially created fundamental. 

Studies of the ear have shown that the sound of a tuning fork when it excites the Organ 

of Corti produces four overtones. Saunders suggests that this is a defect of the ear. After three 

and a half billion years of evolution it is hard to accept the fact that the ear would have such a 

defect. It is commonly assumed that the sound of a tuning fork is a ‘pure tone’ or sine wave. A 

pure tone is an abstraction. Just because we can visualize a sine wave in an oscilloscope does 

not mean that, when fed to a speaker, the carrier wave will contain a simple sine wave. Any 

sound must be the result of a structure. 

At the other end is ‘white noise’. White noise is just as much an abstraction as the sine 

wave. It exists only mathematically. True white noise would contain an infinite number of 

partials and that is a physical impossibility.  

 

THE ACOUSTIC ENVIRONMENT 

 

One of the banes of a touring musician is the incredible vicissitude of the acoustics 

encountered as one moves from hall to hall. This is absolutely unpredictable. What the hall 

looks like, what it is made of, how big or small it is have virtually nothing to do with its 

acoustics. From the performer's point of view there is something almost gratuitous about the 

appearance of really good halls. 

So much time and money has been expended on the field of listening environments that 

indeed the second definition of the term, acoustics is, 'the sum of the qualities that determine 

the value of an enclosure (as an auditorium) as to distinct hearing'. This is, unfortunately not 

necessarily the definition of a good hall. Distinct hearing is not enough, a hall with truly good 

acoustics provides much more. 

We shall begin this discussion by reexamining a notion we touched upon in an earlier 

section. In any vibrating body, periodicity is established by the oscillation. In those 

instruments where the oscillation is air modulated (such as winds and brasses) the movement 



 109 

in the air is actually a compression wave. The proof of this is simple. The speed of sound is 

defined as being about 1050 feet per second. This is also the speed of the compression wave. 

An open organ pipe four feet long sounds a note almost exactly equal to that of middle 

C in concert pitch (A = 440). Middle C is 264Hz and we can see that 
264

1050  = 3.97727273. For 

this reason middle C is often referred to as 'four foot C'. 

If we lengthen the pipe the pitch goes down in direct arithmetic proportion. It would 

take a pipe some 38 feet long to sound the bottom note of a piano (the top note on the piano 

would require a pipe about a quarter of an inch long). 

If we close the end of the pipe, everything is cut in half. Periodicity is determined by 

the time it takes the compression wave to travel to the end of the pipe and back. Four foot C 

takes a pipe two feet long. Changing the size of the diameter of the circular cross section does 

not change the periodicity, this being determined entirely by the length. 

Instrument makers refer to the diameter of the circular cross section as the 'bore'. It is a 

very well chosen term. A change in the size of the bore changes the structure of the patterns 

and thus affects the timbre; it does not affect the pitch. 

As we have seen, the cross section of the bore can be cubic or even rectangular as well 

as circular. While the change in shape affects the diametric patterns, pitch is still determined 

by the length. The nice thing about cylinders with a circular bore is that the length always 

remains the length. The direction of the length of a circular cylinder is always perpendicular to 

the plane of the circular cross section. Even when the diameter becomes much larger than the 

length, it is still the length that determines pitch. A closed cylinder, two feet long, will produce 

middle C regardless of the size of the bore. 

The picture is not so clear when the bore is rectangular. So long as one dimension is 

much greater than either of the other two (as with 'square' organ pipes) there would be no 

problem. The long dimension would establish the pitch. As we enlarge the 'bore' in rectangular 

'cylinders' it becomes more difficult to define the length. To be a good resonator the 

dimensions of a rectangular enclosure must be designed with musical proportions. The 

dimensions given by Vitruvius and others are just such. Before we explore shape as a factor let 

us take a closer look at a more direct function, size. 

If we double the size of our two foot closed cylinder it will produce the C one octave 

below middle C (132Hz). Another doubling gives us 16 foot C or a note equal to the low string 

of a cello (66Hz). This lies near the bottom of the practical range of musical instruments. 

Thirty two-foot C, while still discerned as a pitch (33Hz) would be used only for doubling 

sixteen foot C. 

The only reason we would not use sixty-four foot C lies in the size of the pipe. No 

matter how you design it, a thirty-two foot pipe would be heavy and bulky, too much so to 

justify any strengthening the addition of a low C of 16.5Hz would afford. The principle 

however remains unchanged. Let us imagine a closed pipe 128 feet long. This would give us 

256 foot C with a fundamental periodicity of 4.125Hz. 256 feet is not a long way for a 

compression wave to travel. For that matter, neither is 512 or 1024 feet. We would never 

consider studying pipes this long but in actuality; a resonant, diametric structure would form in 

every case. It would seem that structures with fundamentals this low would be useless, but this 

is only true in organ pipes. 

Let us consider a two-foot cylinder, closed at one end, with a square bore and a 

dimension of one foot in each direction. While this allows a complex timbre it still produces 
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four foot C as its pitch. The diametric structure is one-dimensional; it can form in only one 

direction. The same is true of oscillation. 

We have a tendency to forget that vibration in an air chamber is a function of volume, 

just as with a solid. No matter how many dimensions the vibrating body might have, the body 

reacts as a discrete unit. For whatever reason, one of these linear dimensions will define the 

periodicity of the vibration. The reasons why and how this happens are complex and are not, in 

themselves, germane to this discussion. Empirical evidence shows this to be true. The body 

then reacts as a complex cylinder. 

The more complex this shape the more complex is the diametric structure that creates 

the sound and the less musical it sounds. We usually define it as noise but we must be aware 

that the basic process that creates the sound is always the same. Noise is a subjective notion. 

The one shape wherein this 'cylinderizing' might not occur is the sphere. In a sphere all 

dimensions are equal to the bore. We will take this up in a later section, as it has little use in 

the study of sound but offers fascinating ideas in some related fields. For now we shall 

concentrate on all of the other shapes. 

 

THE LARGER STRUCTURES 

 

Let us return to a two-foot closed pipe with a square bore equal to one-half the length. 

As with the circular bore we can double all of the dimensions, producing a fundamental one 

octave lower. Of course this lowers the entire diametric pattern structure as well. 

If we continue this doubling until the length is equal to 128 feet, we will have a square 

bore cylinder with a bore of 64 feet. It will produce a fundamental frequency of 4.125Hz. Such a 

large resonating body would actually constitute-a fairly large room. (As with all such 

calculations, I am assuming the speed of sound to be 1056 feet per second.) 

It would take the compression wave about a quarter of a second to travel the length of 

the room and back again, but there is no reason to doubt that this would not set up the 

necessary undulations to create a diametric structure just as with a two foot device. Any 

discrete body, that is, a body composed of material of like impedance, will create one, and 

only one, fundamental. 

It would appear that a resonance could form in any size of an object or a gas-filled 

volume. During the moon missions the LEM was crashed into the moon. The result was what 

NASA described as a resonance. Their description was that the moon ‘rang like a bell’. This 

causes us to question the notion that it is the shock or sound wave that creates a resonance. 

Such a traveling wave would take a relatively long time to bounce back and forth in order to 

set up the resonance. Since resonances can form in even larger structures we must reexamine 

the factors that create a resonance. 

Since seems to be no discernable limit to the ‘size’ of a resonance we have to question 

the method of the formation of such a resonance. It may be that it is not the movement of a 

compression wave that sets up the resonance in either air filled areas or solids. A clue may 

come from a drop of liquid. The structure that forms in a splash as previously mentioned must 

come from the drop. This is a high-speed picture of a water drop hitting a surface. What it 

shows is definitely structure. 
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Quite likely this structure is the result of the surface tension that creates the drop. 

Surface tension in denser material is even greater. The surface tension of mercury is nineteen 

times that of water. Solids have surface tension as well. Perhaps the same thing occurs in a 

solid as occurs in the drop of water. This would mean that the structure that is excited by 

hitting or scraping it is already present. This would explain many things. It also suggests that 

there may be two different phenomena happening in an air space, regardless of the size of such 

a space.  Along with the compression wave it may be that an intermolecular ‘wave’ is present 

that would be like the intermolecular wave in solids and liquids.  

This could be determined by a simple experiment. We would use a piano with the loud 

pedal depressed and a microphone in one area. At a distance we would create a loud sound, 

perhaps with a trombone. We would then use sensors to detect the arrival of the sound wave to 

the open piano strings and the microphones. If there were a difference in the arrival time we 

would know there is two separate waves. This is highly speculative but possible. 

Consider the small steel bars that create the sounds of a glockenspiel. The largest of 

these produces a high G of 792Hz. The shape (a rectangular cylinder) is consistent and the 

surface is highly polished. This creates a simple, long lasting structure with amazing carrying 

power. 

Suppose we double all of the dimensions of this bar and then double them all a second 

time. This would increase the mass 512 times. The weight of the bar would now be about 64 

pounds and the fundamental would be nine octaves lower or about 1.5Hz, certainly well below 

the range of hearing. 

If we strike this larger bar (using, of course, a mallet of sufficient size) we elicit a sound 

that is quite audible. The proportions and construction material of both bars are the same and 

thus we can expect that the resonant structure that forms will be as well. It is, therefore, 

physically impossible for us to be hearing the same part of each structure. If it is the 

fundamental we are hearing in the smaller bar it cannot be the fundamental we hear in the 

larger bar. In fact, nothing much below the fourth octave (16th overtone) would be audible. To 

appreciate this difference, consider that if our fundamental is four foot, or middle C, the fourth 

octave is the top note of the piano (4224Hz). 

The pitch of the clank from the 64-pound bar would be at least seven or eight octaves 

above the actual fundamental. This means that the frequency the ear perceives as the principle 

tone, to use Raleigh’s phrase, must lie between the 128
th and 256

th
 overtone. (The 128

th overtone 

of four foot C is 33,792Hz). 
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This explains why the small bar on the glockenspiel rings and the large, 64 pound bar 

clanks. The small bar, when struck, behaves like any impact-generated sound, that is, a very 

complex input structure appears immediately. The higher nodes of this initial structure, 

because of their higher energy demands, disappear rather quickly in a more or less top down 

fashion leaving a very stable standing structure composed of a symmetrical pattern structure 

drawn, most likely, from the ubiquitous six-four chord. Once the initial complex structure 

decays sufficiently (a small fraction of a second) the sound becomes very simple, consistent 

and quite lovely. 

We would expect that the 64-pound bar because of its greater mass (512 times as much) 

would produce, structurally, the same thing, and, in fact it must. The large bar, when struck, 

just as with the small bar, produces at first a complex input structure, which quickly decays 

into a simple periodic sequence pattern. In the case of the large bar this entire pattern, as well 

as the differential structure it produces, is well below the threshold of hearing. What we are 

hearing when we hear the clank, is an internal differential 'build-up', a sub-fundamental so to 

speak. 

The reason the clank is such a brief sound is that is part of that portion of the input 

structure that decays quickly. Another reason the sound is unique is that, while the ear 

perceives a pitch (from the 64 pound bar) to be somewhere in one of the octaves that surround 

middle C, it is a sub structure that forms high in the series and thus a series of tones below the 

perceived pitch will be sufficiently strong so as to be heard, in conjunction with the principle 

or audible tone. 

This particular phenomenon that causes the clank only appears when the perceived 

pitch is sufficiently high so as to permit a complex overtone structure to form below it. As with 

all other music sounds, the farther away from the fundamental the perceived pitch is located 

the shorter and less musical will be the sound. 

As we increase the size of the bar we would increase the size of the mallet as well, 

which would increase the amount of energy involved in the transfer. Sufficient energy would 

exist to boost even very high substructures into audible range. The lowest tone on a 

glockenspiel is a G (792Hz if A = 440Hx). 

 

 
 

A cathedral bell sounding the same pitch weighs six hundred pounds. They cannot both 

be creating the sound by the same methods. The weight of bell tells us that it is not the body of 

the bell that creates the sound that we hear. When such a bell is struck there is a clank to be 

sure but then the characteristic sound of the bell takes over. This is created in the air with in 

the bell itself.  

The Bessel shapes tell us that a pitch will only form when the sides of the cylinder are 

straight, they can conical but they must be straight. The part of the interior in that is straight in 

a six hundred pound bell is the correct length to form that G. As with all instruments the shape 

of a cathedral bell is constant. If we stand in the plane of the swinging bell we can observe that 

the bell sounds much louder when it swings toward us than when it swings away. Like most 

instruments the bell is a wind instrument. Its very name comes from the Anglo-Saxon word 

bellan, meaning to bellow or to make a noise. 
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The actual sound is somewhat more complex as the sound of the bell also contains 

what has often been called ‘undertones’. This is cause by the fact that the tone we perceive is 

not the fundamental The bell is interesting to study, as it is one of the very few tone producing 

devices that involves very high energy. 

I offer still another example to support this notion. For many years I lived by a very 

secluded lake. One very cold winter night I had opportunity to listen to the lake freeze. All 

natural sounds were dormant and civilized sounds were too far away to be heard and so I was 

able to hear some remarkable aspects of this freezing. As the lake froze the ice would swell 

and tremendous pressures would build up in the ice cover. From time to time this energy 

would be released in the form of huge cracks in the ice. 

The initial sound of the crack was very sharp, much like a rifle shot. The sound source 

was localized, that is, one could determine, from the sound, exactly where on the ice the crack 

had occurred. As would be expected the more distant the sound was the less intense the 

apparent sound. 

This very short crack was followed immediately by a definite, pitched musical sound. 

The behavior of this sound was considerably different from the crack that obviously generated 

it. The amplitude of this after-sound was quite the same regardless of the location of the input 

crack. It always sounded the same pitch and the same apparent loudness. This was especially 

exciting if the crack itself was at a distance. 

All of the sounds of any particular freezing action were virtually identical. Every sound 

sounded exactly alike. The pitch was always the same; in fact, this pitch did not vary 

perceptibly from year to year. The amplitude of the after-sound was equally consistent. 

The duration of the sound was also consistent. It lasted the better part of a second. This 

is a long time for a sound that is as complex as this one must be. The timbre, while always the 

same, is difficult to describe although on those very rare nights when the input energy was for 

some reason or other extremely high the sound was like the bellow of some prehistoric 

monster. 

Consider the mechanism that is generating this sound. This particular lake is banana-

shaped and is about a mile and a quarter long. It has a surface area of about one hundred ten 

acres. I can think of not one instance, in music, where water is used as a medium for 

generating diametric structures. It sometimes modifies the sound as in the ancient hydraulic 

organ but it is never used to generate a sound. On the other hand the potential inherent in water 

for the production of these structures is certainly no less than that of steel. 

The lake itself is, in effect, a very large water drum.  When frozen it has, as with any 

drum a stiff membrane across the surface. Most musical instruments require very little input 

energy. Higher energy devices such as the piano are already rare. Very high-energy devices 

such as bells are even more rare. As the mass increases the input energy must increase in like 

fashion. As the bell is enlarged the clapper is enlarged proportionately. 

While the sound I was hearing must be many, many octaves away from the 

fundamental of that ice membrane (as it would determine pitch), in no way would the size of 

this lake limit the phenomenon. It is logical to assume that lakes much larger that this could 

create the same audible circumstances. 

We create a sound in precisely the same manner as the lake when we drop a very cold 

ice cube into a glass of much warmer liquid. The transfer of heat between the water and the ice 

causes great imbalances in the temperature of the ice and the ice cube cracks, just as did 

Cranberry Lake. The sound that results is surprisingly loud and quite musical. It is one of those 
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sounds that sounds pitched even though the pitch is virtually imperceptible (to most of us in 

any case). As with any most musical instruments the major interface with the airborne wave is 

between the standing structure that forms in the air within the glass and the outside air. Even 

the gentle banging together of two cubes or the cubes against the glass makes a familiar, 

musical sound that is easily heard above normal conversation. 

Considering the volume of an ice cube to be a bit less than two cubic inches we can see 

that the ice cover of the lake, at an ice thickness of about six inches, would consist of 

something approaching two hundred million ice cubes. The energy levels that must build up to 

cause the cracks in this lake cover are awesome. Even a large cathedral bell is very small by 

comparison. 

We would expect that this enormous energy input would produce a very powerful 

sound, and indeed it does, however, virtually all of the structural action lies well below the 

threshold of hearing. The fact that one hears such a consistent musical tone clearly indicates 

that even a lake the size of this (110 acres) produces one, and only one structure (thus only one 

fundamental). 

If we cover the glass containing the ice cube the sound is greatly restricted. The same 

holds true if we close the cover on a grand piano. The sounding board of a piano is open to the 

air on either side but the enclosed air chamber is only on the top. When the cover is closed the 

sound is greatly reduced. The piano too is a wind instrument.  

A final example comes from an article that appeared in Discovery Magazine (April 

2003, page 12). It described two fairly recent earthquakes in Mexico. The two were very 

similar in size, about 8.1 Richter. The first hit Mexico City with dreadful results. The second 

hit somewhat later and had the same Richter number and killed just two dozen people and 

created much less damage. It turns out that the land the Mexico City is fairly consistent as far 

as density goes and, according to a Mexican seismologist, Cinna Lomitz it is pitched. He states 

the pitch to have a period of 2.5 seconds. 

In order for this to have occurred the earthquake must also have been pitched and its 

pitch was close to that of the land under Mexico City. 

 

THE ENVIRONMENT AS STRUCTURE 

 

A truly fine concert hall is consummate joy. A truly fine concert hall is also 

surprisingly rare. Architectural acoustics has become a defined discipline in its own right and 

yet very few halls can be classed as good, even among the newer halls. 

The qualities that make up a really good hall are perhaps best understood from the point 

of view of the performer. Except for those instances of very good halls, wherein everything is 

special for audience and performer both, how much, or how clearly the listener hears is usually 

a function of where this listener might be sitting. 

The major thrust in concert hall design in recent years has been centered on two 

concepts; a, the sound must be reflected in such a manner as to insure that every seat, as much 

as possible, receives the same basic mix and intensity of the airborne sound waves and b, all 

'disturbing' echoes must be removed (this is usually referred to as excess sound). 

This would appear to be logical as indeed, in bad halls conditions often exist wherein 

one seat will hear quite clearly while another, only a couple of seats away, will hear virtually 

nothing. Concert halls are, relatively speaking, small and thus echoes are very short. In bad 

halls these can be devastating to performer and audience alike. 
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An entire branch of architecture has arisen with its absorption factors and ray acoustics 

and, without question they have done their job well. Halls can now be designed to be as 

anechoic as the designer wishes. All permitted reflections are spread reasonably evenly among 

the audience and the materials used in the construction of the hall absorb much of the sound. 

The overall quality of this sound is something else again. The experience of performing in a 

hall where the ‘excess sound’ has been removed is very upsetting. Any performer relies upon 

the throwback of the sound to evaluate his or her performance. Without the resonance of a 

good hall it becomes especially difficult to hear other performers on the stage, even if they are 

very near to one another.  

The first quality a singer or instrumentalist usually experiences when he or she 

encounters the infrequent excellent hall is that it takes so much less energy to perform. This is 

not an illusion. Neither is singing in the shower. Very little excess sound is removed in a 

shower stall. We sound good when singing in a shower because of the resonance that forms 

with the shower stall. Just as with the body of a woodwind the stall accepts any pitch. 

As long the resonance forms most of the energy the singer ingests into the shower 

reinforces the sound. It takes very little energy to create a quite powerful sound. 

Even when the sound is not of the same structure as the shower stall the echoes formed 

are so short as to create little disturbance. A room or hall constructed with the same materials 

as the shower stall is not so forgiving. In this case the echoes can be devastating. Unfortunately 

this is the phenomenon that is usually studied in conjunctions with concert halls.  

A singer, singing in a fine concert hall, will experience exactly the same type of 

support as the shower stall singer. Singing in a bad or even mediocre hall is very hard work. 

Halls, which have been deadened by removing the ‘excess sound’, are just as hard. Performing 

in a hall that offers no throw back of the sound is a strange and unsettling experience. 

In a really good hall the problem of where the good seats are disappears. Sound 

distribution is amazingly uniform within a resonance. Perhaps an example will help in 

understanding both the qualities of good and poor halls as well as the capriciousness of their 

appearance. 

Several years ago I had the opportunity of performing the same opera in a great variety 

of performance areas. It has been my experience that if all else is proper the absolute best 

material for a concert area is stone, without qualification. Modern designers gasp at the 

thought of building a concert hall out of stone, and for good reason. The exquisite sensitivity to 

the nature and design of musical instruments that developed in our culture over the centuries 

unfortunately does not seem to exist in structures that form in anything larger than large organ 

pipes. 

I will use as example two very large stone structures with extremely different 

characteristics. The first is the Cathedral of Saint John the Divine in New York City. In all 

fairness, St. John's was not designed to be a concert hall but cathedrals are among the world’s 

greatest natural theaters and thus the desire to make music in them is natural enough. 

Since my group was the first real theatrical ensemble to ever invade the Cathedral, the 

Cathedral itself was in its pristine state. No attempts to reconcile those acoustics with 

performance realities had been made. The only logical place to perform was the crossing and 

thus all reflecting surfaces were a considerable distance away. This is the only significant 

difference between a large performing area and a small one. Apart from the variation in the 

return of signal all else is quite similar in both larger and smaller halls. 



 116 

The first problem confronting a singer or instrumentalist is the amount of energy 

needed for the performance. Performing in St. John's, as with all such poor acoustical 

conditions, is very hard work. It requires considerable energy input to create and support a 

good sound. 

Hearing presents an equally serious problem in poor acoustics. Performers will often 

state that they can't hear themselves. Actually, because of the resonance of the bone structure 

in the body, one can hear oneself, even in a totally anechoic chamber. A performer uses the 

throw-back of his sound to judge its quality. The throw-back he or she seeks can occur only 

under very special conditions. 

This same throw-back of the sound is vital to ensemble performing; in fact perhaps it is 

this that is the worst aspect of the poor acoustical hall. In an area the size of St. John's this can 

be very frustrating. All of the magnificent playing area this Cathedral offers is neutralized by 

the acoustics. If a performer is more than six or eight feet away one simply does not hear him 

or her. Even if the performing group is shoulder-to-shoulder and not very large, music with 

any complexity at all must be conducted. 

Large or small, these effects occur in any hall whatever if the acoustics are less than 

good. Everything about a bad hall is problematical. It is difficult to produce a tone, difficult to 

hear what is occurring and very hard to concentrate. I mention this in detail because there are 

conditions wherein none of these problems occur. 

Some months after the St. John's performance I had the chance to perform the same 

opera with the same complement in another very large cathedral-like structure, the Chapel of 

the Resurrection in Valparaiso, Ind. It was nearly as large as St. John's and its reflecting 

surfaces are, as with St. John's, largely stone and glass. 

Expecting the worst I had a vocal quartet sing, from the crossing, a very polyphonic 

section from the opera. What happened was just about the most beautiful sound that any of us 

had ever heard. It was truly awesome. Anywhere one went in the body of the church one 

experienced the same sound, and this, when the chapel was empty. There was no variation, 

anywhere. I found that I could place the singers as far apart as I wished, it did not matter, they 

could hear one another as well as when they were bunched together. 

We had all experienced halls that produced this phenomenon but never on this scale, 

and in stone. The effect of such acoustics on a performing group is hard to imagine. We could 

spread out the production as much as we desired. A performer felt the same support from the 

church anywhere in the area and could hear all other performers clearly, no matter where they 

were. Because of this support everyone sounded glorious, to themselves and audience alike 

and performing was a true joy. 

It is considerably easier to sing or play in tune in a good hall than in a bad. This is the 

biggest clue to just what it is that causes these discrepancies. 

The only difference between these two churches was size and shape. Absorption 

factors and the like had nothing to do with this acoustical difference. We have forgotten that 

halls of any kind are, in themselves, musical instruments and obey exactly the same physical 

rules. The very same thing happens in a concert hall as happens in the air chamber of a 

trombone. We should expect a consistency of size and design that we simply do not see in 

modern theaters. 

The two performances were consistent in all respects, including one that has become so 

axiomatic that we scarcely look at it and yet, it is the culprit in this entire good-bad hall 
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syndrome. As with virtually any musical performance anywhere in the world we unthinkingly 

observed, the pitch. 

PITCH STANDARDIZATION 

 

There is no doubt that conventions are useful in most communication. Many things 

would be very difficult without them. Design of any kind would be nearly impossible without 

a universally accepted system of measurement (which is, of course, arbitrary). The danger of 

this is that often the mathematics of the measurement system and the numerical system of the 

function in question are not compatible. The very rigidity of the convention will usually 

obscure the nature of the problem. 

The standardization of pitch as exists in the world today is the result of the 

development of instrumental music. Standard pitch of any kind has no use in vocal music. In 

an ideal situation the singers would use the pitch of the area in which they are performing. 

Unfortunately this does not happen in today’s musical experience. The voice is simply not 

pitch restricted, as are most instruments. 

The pitch of an instrument is, on the other hand, totally dependent upon its size. 

Instruments are therefore consistent; all  BH clarinets have identical bores and length. 

Manufacturing reasons prompted the adoption of 440Hz as ‘Concert A’. There is no more 

reason for 440A as for any other frequency and yet, we are taught, from the beginning, that A 

IS 440. In music circles especially this pitch is held to be as immutable as the atomic weight of 

hydrogen. 

When my group played in each area the performance was always preceded by a 

ritualistic 'tuning up'. Almost any performing group one might imagine will do the same thing. 

Someone will always have a tempered pitch pipe and before any music making occurs 

someone will sound the pitch. This is true even in vocal ensembles where a standard pitch is 

not necessary. If we called in a string quartet to test the acoustics of a new hall the first thing 

the quartet would do, without question, is tune to 440A. We would be surprised if they did not 

and yet, this is precisely what it is that goes wrong in halls with poor acoustics. 

The ancients seemed to know this and in fact there is a magnificent theater, built 

maybe twenty five hundred years ago that may prove this. 

 

THE THEATER AT EPIDAURUS 

 

One of the truly frustrating things about the study of history is the difficulty in 

understanding the nature of the music of earlier cultures. Music is nearly always transmitted 

within a culture by rote. Ours is certainly one of the few cultures that have attempted to write 

about music in a language that is not musical in nature. Not only has little pertinent 

information survived but there was, in most cases, precious little written down in the first 

place. 

Another difficulty arises. We can only view the culture in question through very 

modern eyes. The mistakes we make in contemporary understanding of music and acoustics 

we usually make when analyzing ancient systems. 

On the other hand, the physics of music have not changed in the least. What is true 

today has always been true. To that extent we should be able to understand the music of any 

culture. 
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For centuries both the Greeks and the Romans built theaters with a very unique, 

consistent structure. The truly fascinating thing about these structures is that they are basically 

circular. A beautiful and amazingly in tact structure of this sort exists in Epidaurus. This 

structure might be sufficiently in tact so as to still perform, to a great degree, the function for 

which it was designed. 

The structure consists of a circular stage area surrounded by a circular step-like 

structure. This step structure covers more than a semicircle and the face of each successive 

step (which is the area that defines the circle) is concentric with the circular stage area. The 

distances of the steps from the center of the structure appear to be in harmonic ratios. To my 

knowledge no precise measurement of distance of each individual riser from the center has 

been made. 

 

 
 

This was a common design and many were constructed, first by the Greeks and 

subsequently by Romans.  

Most contemporary acoustical physicists, when they consider architectural acoustics 

will speak of the 'problems' of the Greek and Roman theaters. The risers, they say, create 

debilitating echoes. This description of the acoustics resembles the description of the acoustics 

in a poor concert hall. Both the Romans and the Greeks built a lot of these structures over a 

period that lasted for centuries. They rank among the greatest architects in history and it does 

not seem likely that they would continuously construct structures this large and complex if 

they did not work, and work very well. 

In preceding sections I have put forth the argument that the structure formed in a 

concert hall is identical to that which forms in virtually every instrument we use. Concert halls 

are, in and of themselves, musical instruments. The design of these Greco-Roman structures 

more resembles a musical instrument than anything else. We have observed earlier that nearly 

all musical instruments are cylinders with circular cross sections. These ancient structures are 

somewhat drum-like, or perhaps, bell-like. 

The complete circle is not needed as the reflections from the risers would all be 

focused toward the center. A conjugate would be returned to the risers. In this way a standing 

structure would form, just as in a good concert hall or a musical instrument. 
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If it is true then that these circular structures are, in every way, musical instruments, 

and were designed to be such, then it must be true that the structure itself will respond only to 

a very precise set of frequencies, just as does any musical instrument. 

Let us assume that we wished to test the existing acoustics of the theater at Epidaurus 

and to this end we invite a string quartet from a nearby university. The first thing this quartet 

would do, before it played so much as one note, would be to tune all of the instruments to the 

concert pitch, 440Hz. We would be quite surprised if they did not. Virtually any group we 

might present would do exactly the same thing, this ritualistic sounding of the pitch. Even 

groups that do not need such tuning (such as vocal groups) will go to great pains to sing in the 

'proper' pitch. 

It is logical to assume that these ancient circular 'theaters' were in fact resonators. They 

are musical instruments in their own right and were designed to be such. As with any musical 

instrument there will only be a very few frequencies involved in the creation of the standing 

wave. The chances of 440Hz or any of the scale tones generated from this pitch being one of 

the frequencies of the resonant structure of the theater at Epidaurus is extremely remote. So 

ingrained is the notion that A is 440 and all music must conform, that there seems to be no 

awareness of the problems this particular rigidity creates. We merrily go on using 440A as a 

defining point and then talk about the problems of Greek and Roman theaters. 

It seems that all discussion of the acoustics of Epidaurus speak in very general terms. 

The acoustics are tested by clapping or singing. Clapping is a complex impulse and may call 

forth the pitch of the theater but it is not particularly dependable. Singing would only be useful 

if the pitch chosen was the pitch of the theater. If such studies have been done there appears to 

be no data available about them. The actual pitch of any structure would be difficult to 

ascertain if one were not looking for it. 

As with most music of the world, there was absolutely no musical reason, in the Greek 

or Roman world, to change tonality once such tonality had been established. Both the Greeks 

and the Romans used the modes, which are diatonic and relate to an unchanging fundamental. 

In its simplest form a mode is the diatonic scale, beginning and ending on a note of that scale. 

Consider: the major scale is; do, re, mi, fa, so, la, ti do. Phrygian mode would be; mi, fa, so, la, 

ti, do, re, mi.  

 

 
Diatonic scale 

 

 
Phrygian mode 

 

Actually modal structures are more complex but even this simple illustration shows 

that any given fundamental can support at least seven modes. These seven tones are all that the 

theater would be required to sound and all would be partials of the fundamental of the theater.  

Being locked into one tonality would be then, no problem for an ancient theater. The structure at 

Epidaurus would have one, and only one, fundamental. Since the modes themselves are permutations of 

the same structure they, in turn, have a common fundamental. Poetry readings and speeches were very 
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often sung in the ancient world. It is quite likely that the pitch they used was the pitch of Epidaurus 

itself. There is a theater in Athens whose acoustics have never been rivaled and where productions 

occurred that must be called operas. 

There are two forces that mold any edifice, design and function. The consistency in 

design of both Greek and Roman structures would lead us to believe that these structures were 

very functional in nature, the design being almost totally dictated by what they do. In the case 

of these old structures, this function was to resonate. The ideal design for any musical 

instrument is circular, and the function of any musical instrument is to resonate. 

The prime function of a resonator, such as Epidaurus, is to create a diametric structure, 

and this is exactly what the circles were designed to do. The mathematics of what happens 

with the structure must await some delicate and precise measurements that, for the most part, 

probably do not exist. Consider a simplified cross section of this structure at Epidaurus. 

 

 
In the very center is the 'stage', whose center is pierced by the line RO. Section B is a 

series of what appears to be thirty-five risers. At W there is a very wide riser that creates a 

large horizontal area. At the far side of W is a second series of twelve risers.  

This structure is not so easy to understand as it might at first appear. Is RS the bore or 

is OX? The length will be either RO or RO plus the thickness of the stage. We should be able 

to assess the fundamental of such a structure empirically (especially if we have the proposed 

device) and then tally up the math. 

If the risers themselves represent simple overtones then the risers closest to the stage 

are the highest of these overtones. As the angle between the stage and each successive riser 

increases, less of the vertical face of each successive riser is accessible from the stage. 

The first question that arises is why did they not complete the circular structure? 

Perhaps it wasn't necessary. Circular reflectors would reflect all sound to the center point. Any 

segment would do the same. When the reflected sound hits the center point a conjugate must 

be thrown back. A certain amount of sound would escape it is true, but much of the sound 

structure would be thrown back against the circular segments creating the standing structure in 

the volume of air within the theater. 

In all probabilities the entire circular structure would form sympathetically, giving us 

an air-to-air interface not only on the top but on much of one side as well. 

 

RS

A
W

B
Stage
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VITRUVIUS 

 

The best source of information on Greek and roman Theaters comes from Vitruvius 

Pollo who was a major Roman Architect in the first century A.D. He is often erroneously said 

to be the first architect. He wrote extensively about many edifices that were already very old at 

the time of his writings. 

These books were the bible for all architects until the Italian Renaissance.  The reason 

tat they survived at all was because of the Scriptos of Charlemagne. An educated person in the 

ancient world was expected to be well versed in many different fields. In the introduction to 

book one he lists the things a good architect should know. 

 
He should be a good writer, a skilful draftsman, versed in geometry and optics, expert 

at figures, acquainted with history, informed on the principles of natural and moral philosophy, 

somewhat of a musician, not ignorant of the sciences both of law and physics, nor of the 

motions, laws, and relations to each other, of the heavenly bodies.  

He detailed plans for various buildings are in the first four books. All of his 

proportions are composed of simple integral relationships, the simple ratios of music, even 

when the effect is for the eye. 

 A bit later in the article he continues: 

On this principal of arrangements, the voice, uttered from the stage as from a center, 

and spreading and striking against the cavities of the different vessels, as it comes in contact 

with them, will be increased in clearness of sound, and will wake an harmonious note in unison 

with itself. 

Modern acousticians seem to reject these ideas, although it is hard to imagine why. 

Vitruvius’ writings are excellent, even by today’s standards so it is hard to imagine why 

Vitruvius would mention this if it were not true. It has also been said that the vases would only 

absorb sound and not reinforce it. This I find hard to understand. Such vases would boost the 

sound as well as a sounding board or resonant chamber of any sort. 

In an article in the November 1963 edition of Scientific American Vern Knudsen 

wrote: 

 
Vitruvius, the first-century Roman architect and engineer, wrote that large vases tuned 

as resonators were often located in the seating area to reinforce certain sounds. Whether or not 

such vases were actually used is uncertain, but in any case they could only have absorbed 

sound, not reinforced it. 

   

 This is a very common assumption and it clearly shows the lack of understanding of 

the nature of a resonance. A good singer can break a crystal goblet by singing the proper note. 

This requires a very good grade of goblet and a singer who can maintain a steady pitch. The 

goblet will resonate to any pitch. At one pitch, the fundamental of the goblet, a different 

reaction occurs. The resonance that forms will increase so long as the sound is present. It is 

just like Helmhotz’ swing. Every cycle of the sound from the singer give the resonance of the 

goblet a push. It is this that causes the resonance to become strongest. The fact that is 
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overlooked in modern acoustics is that the energy that breaks the glass comes from the glass. 

This is discussed in part III of these papers. 

 This is why the vases in the Greek theaters would reinforce and amplify the sound in 

the theater. To say that the vases would absorb the sound is totally absurd.  

Vitruvius goes to describe in detail the construction and placement of these vessels. 

 
On the foregoing principles, the brazen vases are to be made with mathematical 

proportions, depending on the size of the theatre. They are formed so, as when struck, to have 

sounds, whose intervals are a fourth, fifth, and so on consecutively to a fifteenth. Then, 

between the seats of the theatre, cavities having been prepared, they are disposed therein in 

musical order, but so as not to touch the wall in any part, but to have a clear space round them 

and over their top: they are fixed in an inverted position, and one the side towards the scene are 

supported by wedges not less than half a foot high: and openings are left towards the 

cavities on the lower beds of the steps, each two feet long, and half a foot wide.  

 

Vitruvius uses such detail as this in all of his directions on construction of any sort. He 

leaves nothing to chance and musical rations dominate many of them 

Notice that he states quite unambiguously that the proportions of the vases are 

dependant on the size of the theater. This can means only one thing; these theaters were 

pitched. When you performed in one of these theater you would have had to use the pitch of 

the theater. These theaters were, in every way, musical instruments. 

He uses as his musical theory source Aristoxenus, a fourth century philosopher and 

student of Aristotle. Almost all of Aristoxenus’ writings on music are lost but many probably 

survived al least until the time of Vitruvius, judging from the references by Vitruvius. In music 

Aristoxenus held that the notes of the scale are to be judged, not as the Pythagoreans held, by 

mathematical ratio, but by the ear. He also held the theory that the soul is related to the body as 

harmony to the parts of a musical instrument. 

Many of the modern attempts to decipher the little that still remains of Aristoxenus’ 

work use the tonometric system. While Aristoxenus terms can be a bit murky the use of the 

tonometric system only serves to make them even more obscure. 

Since Aristoxenus did not hold to the Pythagorean belief in intervallic ratios we have 

no way of knowing what he meant when he described the ‘movable tones’ of the tetrachord 

theories of ancient Greek music. It is totally unclear what he meant by quartertones. 

Here is representation of the old Greek system in modern notation.  

 

 
 

The five tetrachords (marked by brackets) are named Hypaton, Meson, Synhemmenon, 

Diezeugmenon, Hyperbolean. These are marked by half notes. These are the fixed notes of the 

scale. The quarter notes mark the moveable tones. There are seven permanent tones, 

discounting the low A, which was named Proslambanomenos. All of the notes are named but 

as they have no meaning to this discussion I have omitted them. 
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These eighteen notes make up a class. It is in the concept of the classes that the theory 

becomes difficult to understand. Suffice to say for now that half notes remain fixed regardless 

of the class. 

He is very specific as to where the vases should be placed and of the pitches. To the 

ancient Greeks the only consonances were the perfect fourth, the perfect fifth and the octave. 

They did not think in terms of superposed intervals so they listed the perfect eleventh, the 

perfect twelfth and the perfect fifteenth as well. These six intervals were the framework of the 

music of that time.  

Their tuning system was somewhat different. Vitruvius said that in small theaters a 

horizontal range halfway up the theater should contain thirteen equally spaced niches each 

with a specific frequency. 

In larger theaters he specified it be divided into four horizontal areas, the top three all 

with thirteen niches and vases. He described the tunings of the three ranges in the terms of 

Aristoxenus and the Greek methodology. The bottom layer should be the enharmonic system, 

the middle range the chromatic and the top the diatonic, the same range as the single range of 

the small theater. 

It is difficult to know what he meant by enharmonic and chromatic as the terms are 

different those we use today. Here is an example of the tuning of the three ranges that gives a 

good idea of the complexity of the tunings of the thirty-eight vases. Vitruvius stated that the 

there should be no center drum on the middle range as there is no other note that forms a 

natural concord of sound. 

 

 
 

 The top stave would be the tuning in a small theater with only one row of vases. 

These theaters not only were tuned but also were actually very sophisticated musical 

instruments. The use of vases apparently was dying out in theaters in the city of Rome 

although they were still used in the provinces at the time of Vitruvius’ writings but even as he 

mentioned this he stressed the need for following the dimensions he put forth.  

One distinct difference between Roman and Greek theaters was that the performers in 

Roman theaters played on the scaena or stage whereas the Greek performers played as well in 

the circular area called orchestra. This would have given Greek performers better access to the 

vases. 

Greek performers often used masks shaped as megaphones. A theater with acoustics as 

good as these must not have had the need to direct the sound to sections of the audience. This 

would have been unnecessary as, just as with the acoustics of the Chapel of the Resurrection 

on Valparaiso, Ind., the sound would have been equal in all sections of the theater.  

I think that the performers in the orchestra wore the masks and they directed the sound, 

not to the audience, but rather to specific vases. The theater would already be sounding the 
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fundamental structure of the theater. By directing sound to the proper vases certain acoustic 

structures that were sub fundamentals of the basic fundamental could be reinforced.  

This would much like playing a theater tuned to C but reinforcing the tonality of D or 

A for instance. It is very much like the idea I present for a properly tuned listening area. This is 

a very sophisticated idea but considering the intricacy of the layout of the vases it is quite 

likely that this is the way they ‘played’ these theaters.  

Generations of performers played in these 'theaters'. Over the years they would have 

discovered every little nuance and would have played these great stone instruments with all of 

the finesse with which one might play any instrument today. 

The Ten Books of Architecture are worth reading. They offer us a excellent look at the 

life and thinking of first century Romans. Here is a section in which Vitruvius shows how little 

the life and fortunes of the artist have changed in two thousand years. 

 
The Delphic Apollo, by the answer of his priestess, declared Socrates the wisest of men. 

Of him it is said he sagaciously observed that it had been well if men's breasts were open, and, 

as it were, with windows in them, so that every one might be acquainted with their sentiments. 

Would to God they had been so formed. We might then not only find out the virtues and vices 

of persons with facility, but being also enabled to obtain ocular knowledge of the science they 

profess, we might judge of their skill with certainty; whereby those who are really clever and 

learned would be held in proper esteem. But as nature has not formed us after this fashion, the 

talents of many men lie concealed within them, and this renders it so difficult to lay down an 

accurate theory of any art. However an artist may promise to exert his talents, if he have not 

either plenty of money, or a good connection from his situation in life; or if he be not gifted 

with a good address or considerable eloquence, his study and application will go but little way 

to persuade persons that he is a competent artist.    (Italics mine) 

 

THE CAVE 

 

Before we relate all of this to contemporary structures let us briefly take one more step 

back in time. It is to prove a point. 

Caves are very significant in the collective past of the species. Even today we often 

refer to all of the people of the Paleolithic epoch as cavemen. Considering the choices 

available to Stone Age man the cave is not a bad place to live. Temperature is both constant 

and comfortable and they are relatively easy to defend. 

There were drawbacks. The safe, comfortable ones were usually very dark. Attempts at 

lighting could easily fill the cave with smoke. In spite of this many large caves are known to 

have been inhabited for unimaginable lengths of time. Only very adaptable, ritualistic tribes 

would have survived such a restrictive environment. 

Equally as troublesome but never mentioned is another difficult problem, acoustics. A 

cave that was actually inhabited would support a fairly high population density - children, 

babies, animals and more. If these sounds were permitted to be random the result would be 

absolute chaos and often probably was. 

Whatever else it is, a cave is an enclosed air chamber. We can expect that it will 

resonate and that the larger, room-like areas would have one, and only one ostensible 

fundamental frequency. Sooner or later any tribe living in any cave would discover it. This 

would be motivated by survival. Caves usually have highly reflective walls and any sound 
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ingested in pitches that are not the resonant few would create ghastly and highly disruptive 

echoes. Consider the sound of an indoor swimming pool full of noisy swimmers. 

Once they figured out that if they only sang a few related pitches everything in the 

entire cave would have changed. It would be possible to communicate to any point of the cave 

by singing no louder than a mother would sing to her baby. Many instruments most likely 

developed as signaling devices. It is not inconceivable that music itself came from the same 

source. 

How they would interpret this resonance is anybody's guess. Large caves would 

provide a vast integral overtone potential, allowing them to sound many notes that feed the 

resonance. We are so used to thinking of music through our linear language of words that we 

forget that music is completely different, that its existence does not depend in the least on this 

linear language. One does not need words to sing. It is quite possible, even likely that 

primitive man often developed complex and exotic music systems. There is no way we can 

ever know but I strongly suspect that the inherent sophistication of many of these old systems 

would astonish all of us. 

We can only guess at the possible sophistication they might have achieved in so many, 

many generations. A child growing up in a cave would know the pitch of the cave from before 

he could remember. We can expect a Paleolithic axiom that stated: you cannot use the pitch of 

one man's cave in another man's cave. Every cave, no matter its size, had its own pitch and 

only a significant change in the interior volume could alter it. 

Every one of the Greek and Roman 'theaters' had its own pitch as well and just as with 

their Stone Age ancestors, generations of children no doubt grew to adulthood with an intimate 

knowledge of the pitch of Epidaurus. 

It is hard not to believe that there is much continuity between the timeless cultures of 

the Paleolithic to the volatile culture of the Greeks. We know there must be Stone Age 

carry-overs that exist even today. The mysterious quality of the numbers 7, 11 and 13 might 

have roots far older than we might dare to believe. 

The most frustrating thing for all of us who would know the past is the fact that music 

leaves few traces. By the same token man has always been able to sing. For various practical 

reasons we have grown away from this type of acoustical experience. Such a pullback has not 

proved beneficial in the least, in fact, quite the opposite. Today we usually think of music in 

terms of other branches of science. We forget that until quite recently music was considered to 

be a science in its own right. We have, to a great degree, trivialized it and this is unfortunate. 

Because it does not stare out at us as does statuary is no reason to think that music did 

not have a profound effect on the development of the culture itself. 

French researchers Iegor Reznikoff and Michel Davois have recently shown that cave 

art may well have been used in rituals accompanied by songs or chants. The two studied the 

acoustic resonances of three caves in the French Pyrenees by singing and whistling through 

five octaves as they walked slowly through each cave. At certain points the caves resonated in 

response to a particular note, and these points were carefully mapped. 

When Rezinikoff and Dauvois compared their acoustic map with a map of the cave 

paintings, they found an astonishing relationship. The best resonance points were all well 

marked with images, while those with poor acoustics had very few pictures. Even if a 

resonance point offered little room for a full painting, it was marked in some way - by a set of 

red dots, for example.  
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Cave resonances are not particularly rare. It is not likely that Cro Magnon would mark 

the spots with what are often elaborate drawings just to mark such resonances. Unfortunately 

the researchers who found this remarkable set did not list or probably did not ascertain the 

frequency of the sounds they used at the various locations. It may well be that what made this 

cave interesting enough to those early people to mark those locations was that the pitches were 

closely related. This would have made the cave extraordinary indeed. If singers were placed at 

the various locations and they all sing the proper pitch the result would be a very impressive 

resonance. 

Stone is a very good resonator. Such a resonance may have been heard at great 

distances. 

 

THE MODERN CAVE 

 

Any room, any hall, any church; in fact, any enclosed air filled area will behave in the 

same manner. They are all musical instruments, even if not by design. Not all areas resonate 

the same, but that is true of all musical instruments. 

Not only did many caves of the Paleolithic and the circular structures of the Greeks and 

Romans each have its own individual pitch but any enclosed structure does so as well. For 

some reason or other we seem to expect that this pitch will always conform to concert standard 

of 440Hz for A above middle C. Every cathedral in Europe must have, not only its own 

peculiarities but its own distinct pitch as well, and yet, there is, almost without doubt an even 

tempered organ tuned to 440A in every one of them. 

The only reason that the Chapel of the Resurrection was different from St, John the 

Divine was that by sheer chance did it conform, at least to a degree, to our pitch. In St. John's it 

was not even close. It is hard to find another explanation for why similar structures are so 

capricious acoustically. 

If we accept the fact that any air filled structure is a musical instrument it becomes 

easier to understand that the ratio of the size of any instrument to the size of the air volume in 

which it is playing is highly critical. If the ratios are simple, good acoustics will occur. If the 

ratios are oblique, the results can be dreadful. 

This is true so long as it is the hall itself that forms the standing structure within the 

hall. On the other hand a sympathetic resonance is not dependant on the size. The air chamber 

of any instrument will respond the pitch of any input provided the inputs are of a certain 

character. This is characteristic of any resonance. It should be possible to create a powerful 

sympathetic resonance in any performing area even if it doesn’t conform to the natural 

resonance of the area. 

This would change the experience of a concert hall considerably. Once a standing 

structure has formed and a performer is playing or singing in the pitch of the hall all of the 

energy of the resonance would reinforce all of the pitches of the performer. This would make 

any area behave, to a significant degree, like the wonderful acoustics of the Chapel of the 

Resurrection in Indiana., only more so as we could add as much energy as we wished. As long 

as the input frequencies were the proper frequencies for the area the result would natural 

amplification.  

The acoustics of a hall would be independent of size and construction material to a 

great degree. The best input for a given hall would be determined empirically. The result 

would be infinitely better than using a public address system. 
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It is possible that a strong resonance in any given area would organize all of the 

ambient sound within the area into the resonance itself. This has many interesting possibilities. 

It would allow us to maintain concert pitch (440A). 

It should be a more practical way of ‘conditioning’ a room in a home.  

 

SUMMARY 

   

            Once the tenets of the preceding are proven we will be able to precisely define the 

difference between vibration and resonance. The understanding of this difference is critical. 

 The airborne carrier is created by a resonance and not by vibration. Once the vibrating 

body is excited it often becomes necessary to insure that none of the sympathetic resonance 

are permitted to vibrate. We see this on the sounding board of a piano on which heavy braces 

are placed across the sounding board to stifle any such vibration. This will be the case for 

many non-musical uses of the Structural Resonance theories. 

 Musical uses will include true simulation of any music sound. It will permit us to 

create listening areas of any size or shape that will be ideal. As a teaching instrument it will be 

without equal. Both singers and string players learn harmony, as a rule, at an even-tempered 

keyboard. With proper training the very notion of improperly tuned intervals will simply cease 

to exist. Imagine growing up in such an environment. 

There are many possible spin offs that would come from this theory. Many will not be 

ostensibly musical as we are dealing with vibration and resonance. It is has been said in fact 

that the quantum states of an atom are musical in nature as are wave theories. Some go so far 

as to say that when you study quantum physics you are studying music. There are many other 

things that are not really so speculative. The design and functioning of the cochlear implant for 

one. 
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 STRUCTURAL RESONANCE 
 

 THE MATHEMATICS OF MUSIC 

 AND VIBRATION 
 

PART THREE 
 CONTINUITY, MOTION and ENERGY 

AND OTHER THINGS 

 

   A true continuum is something 

whose possibilities of determination  

no multitude of individuals can exhaust 
Charles Peirce 

  

  

 

 
 

 

    

 

I can stand before the most august and erudite group of mathematicians and others of 

similar disciplines and say the following: “Consider a line bounded by two points, A and B. 

Now consider the distance between those points A and B to be infinite”.    

Instead of rising en masse to ask me if I have completely lost my mind most of the 

listeners will give that slight nod that signifies that they are considering just such a line. This is 

the true beauty of the human mind; that we can ‘consider’ a line infinitely long bounded by two 

points. We do it all the time. We have infinite sets, bounded and unbounded. We have 

unbounded sets which are much like our infinite but bounded line and we have empty sets 

which really take a bit of considering. And, of course we have irrational, transcendental and 

imaginary numbers.  

In his delightful book, ‘A Tour of the Calculus’, David Berlinski states that if we deny the 

irrational numbers we avoid a very complex argument but then we have no calculus. This is 

really not correct. Whether irrational numbers are ‘real’ or not has nothing to do with the 

calculus. While calculus is used to describe various aspects of physical reality it, in itself, it 

has little actual relationship with physical reality. Bishop Berkeley and Leopold Kronecker  

© 1978, 1982, 1999 Thomas Wagner 
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both argued vehemently in regard to this and both were dismissed and misunderstood.  

Kronecker, when he said the God created the integers and man created everything else, was 

stating a simple fact. Only positive integers can really describe physical reality. All else is 

abstract and is invention, clever to be sure but an invention just the same.  

This did not keep Kronecker from using these abstract fabrications quite brilliantly. He 

used such fabricated systems as calculus very well. Poincaré once stated that the problem with 

infinitesimals is that they are never quite infinite. This did not stop him from using the calculus 

to great advantage. The calculus needs no justification beyond the fact that it works, and it 

works amazingly well. Einstein put it best: 

 

"As far as the laws of mathematics refer to reality, they are not certain; as far 

as they are certain, they do not refer to reality." 

 

We forget that even Euclidean geometry is abstract. Let’s begin with the point. A point 

is meant to indicate location. As such it is said to have no dimensions. A dictionary definition 

will usually state that ‘a point is thought of as being a location in space but having no 

dimensions’. The same dictionary will define a circle as ‘a curved line, every point of which is 

equidistant from a center point’. A true circle, by definition, does not exist. It is an abstraction. 

There is no reason why the diameter of a circle should form a rational relationship with 

the circumference any more than there should be rational value for the square root of two. If we 

follow the various mathematic devices used to develop a value for  we can come to the 
conclusion that a circle is a regular polygon with an infinite number of sides. That is as good a 

definition as any. We can add any number of sides to our polygon but we will never reach the 

circle – again the infinite series, the asymptotic function.  

The world looks decidedly analog. So much so that it might appear strange that we 

would question it. In fact most people don’t. Most scientific people will state, categorically, 

that the nature of the physical world is analog. The success of the mathematics of continuous 

functions is perhaps the greatest monument to the ingenuity of our species. From Newton’s and 

Leibnitz’ derivative of a real value function to Cauchy’s development of the theory of limits to 

the field equations of Maxwell, this math has been the bedrock of scientific achievement. 

Without it our world of technical achievement and scientific understanding would not exist. 

Whether or not irrational numbers are real in such mathematics as this is without importance. It 

is a pointless argument. 

The success of calculus is the prime reason we do not question the ‘analog look’ of 

reality. 

When we watch movies or televisions shows we suspend belief in order to enjoy the 

imagination of the creators of such fare. We do much the same thing when we work with linear 

mathematics such as the calculus. 

The first question is what is meant by real? You cannot define such a quantity as 2

numerically. We can create it symbolically. We can write 2  and treat it as if there were such 

a thing. The problem is that there is no number which, when multiplied by itself will equal 2. 

This is a fact. Any attempt to find the 2  always produces an unending decimal whose 

decimal part goes on and on and never produces a recognizable pattern. Certain fractions also 

produce unending decimals, such as 
3

4  = 1.333333…. or 
28

15  = 0.53571428571428571428. In the 
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first instance a single digit is repeated endlessly and in the second the pattern 571428 is repeated 

endlessly.  

 These decimals behave differently from 2 . If we multiply 1.333333 by 15 we get the 

digit 20.  

 On the other hand with 0.53571428571428571428 if we multiply this value with either of 
the members of the fraction we get the other member.  

 
0.53571428571428571428 x 15 = 28 

0.53571428571428571428 x 28 = 15  

 

While this is painfully obvious it defines the difference between ration and irrational 

numbers. No matter with what you multiply an irrational number you always get another 

irrational number. When an irrational number is brought into any mathematic calculation 

absolute accuracy is lost. This is quite obvious in musical mathematics in which irrational 

numbers are an absurdity. 

 Kronecker also argued that negative numbers and zero are abstractions. Zero is strange 

fellow. It is also an invention, albeit a useful one. It is usually classed as a digit and a positive 

digit at that. It serves well as a marker in base ten arithmetic. It allows us to write such 

equations as 5 – 5 = 0. Classifying it a digit requires a bit of imagination. This idea probably 

stems from its use to divide the positive and negative numbers. Negative numbers are usually 

described as separated from the positive by zero. 

 
-5, -4, -3, -2, -1,  0, +1, +2, +3, +4, +5 

 

 The same thing can be expressed by shifting the +1 to the –5 location. 

 
+1, +2, +3, +4, +5, +6, +7, +8, +9, +10, +11 

 

 Mathematically the two sets are equivalent however the second set avoids both the zero 

and negative numbers. This is similar to the expression of the enharmonic system as digits. 

 In set theory we have to deal with the empty set. This is another of mathematics 

oxymorons. On the other side of the coin is the infinite set. Set theory, as with so much of our 

mathematical thinking is often more philosophy than something that deals with physical reality.  

 It is convenient to use zero as the starting point of a Cartesian graph and zero can be 

used to mark the division between positive and negative numbers but even in this case counting 

cannot start with zero. In exponential systems, such as music, it is illogical even to start with 1, 

as 1 with any exponent will still equal 1. Using zero as an exponent is another abstraction, 

convenient but artificial. We get around the problem of starting an exponential series with 1 by 

the abstraction x
0
. The exponential series of 3 begins with 3, not 1. Pythagoras’ notion of the 

non-existence of the integers 1 and 2 suggests a sophistication of which we can only guess. 

 We not only define zero as an integer but as a positive integer and then go on to state 

that 00 
= 1, or at least many do. This clearly indicates how much of our mathematical definitions 

are fabricated or, at best, assumed. 

 How much more convenient binary arithmetic would be if, instead of using 0 and 1 we 

were to use 1 and 2. There is no reason to start counting with zero in the binary system. We find 

ourselves numbering bits in a register not only from right to left, but designating the first bit as 

bit zero. It is quite confusing when you first start learning about computers to find that, in a 
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given register, bit 3 is the fourth bit from the right. The same thing occurs when we enumerate 

components in a logic circuit. A series of flip-flops in a counter is nearly always numbered 

with the first flip-flop as zero. There is no reason to use zero in a binary system even as a 

marker. We do not make this mistake in music, which is also, in some ways, a binary system. 

There is no zero in the mathematics of music and there is no need for one. 

 Geometrically speaking a line is a continuum of infinitely small points, which means of 

course that there an infinite number of points on any given line. No one will deny that this is 

abstract thinking. Dedekind believed that a line could be cut at one of these infinite points, the 

famous Dedekind cut. He believed that it was not possible for the rational numbers to describe 

all of the points in a line. He stated that between the rational number were the irrational 

numbers. 

 There is no limit to the number of points the rational numbers can describe. Once again 

we have the asymptote. The number of these rational numbers can never be infinite. The 

continuum of irrational points on a line is a fiction just as is the circle, for exactly the same 

reason. 

Dedekind offers an interesting proof of the existence of irrational numbers. He uses 

reductio ad absurdum to achieve this proof. Actually what he proves is that there is no number 

to fulfill the conditions he sets forth in the proof.  How many times we begin a mathematical 

argument with the statement – suppose there is a number that ---- when our intent is to prove 

that there is no such number. 

Absence of proof does not in any way constitute proof. This argument is used often. 

Religious groups will argue that it is impossible to prove that God does not exist. This is true 

but the fact that it is true does not establish the existence of God. You cannot prove fairies 

don’t exist. Or ghosts or UFOs.  

It doesn’t matter in the least that irrational numbers are fiction. The mathematics that 

uses them is effective with or without such proof. 

 In fact the reason we do question the reality of this analog world is that continuity 

brings us face to face, among other things, with that mother of all of imponderables, infinity. 

We even have symbol for it. Creating a symbol for something like infinity gives an unreal 

existence to something that simply does not exist. Symbols can be a bit dangerous as it is so 

easy to begin to believe that the meaning behind the symbol is real even when it is not. We 

forget that something that is unbounded is not infinite. 

While we may give lip service to that abstract nature of such symbols, especially in 

mathematics, it seems that we disregard the semantics of these terms. We continuously speak 

of them as if they are real. How we use these terms is a mirror of how we think about them and 

to a great extent on how we think about abstraction in general. If we refer to an abstraction as 

being real we come to think of it as being real. 

Consider the common mathematical statement: there are an infinite number of solutions 

to the equation x + y = 2. Such statements are very common and yet they go decidedly against 

the very rigorous nature of mathematics itself. They imply the existence of infinity. Such a 

statement, by the way it is worded, is false. There is no limit to the number of solutions to that 

equation but that number can never be infinite. If a person were to obtain immortality he or she 

would simply never die, he or she would never become infinitely old. Life expectance would 

be unbounded, but in no way infinite. 

Then there is this one: x . Consider how we read that, ‘as x approaches infinity’. 
The fact that we have a symbol for infinity gives it an artificial reality. The mathematician will 
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defend the practice and state the use of convergence and divergence and limits and these are 

indeed very ingenious and quite useful devices but they still do not establish an actual existence 

of infinity. We simply cannot actually define something that isn’t. 

Carl Sagan, in one of his imaginative TV excursions, attempted a description of 

infinity. He started with the definition of a googolplex ( 100
10 ). Even with such a large number, 

he stated, infinity is still a long way off. This clearly shows how that, even when we know 

better, we still conceptualize and speak about infinity as being real; as if it were something we 

really could approach, as if it had ‘size’. Actually if you take a googolplex, raise it to the power 

of a googolplex and the then raise the result again to the power of a googolplex you would not 

only have an unimaginably large number but infinity would be just as ‘far way’ as it was when 

you started. 

Continuity was the going thing in eighteenth and nineteenth century mathematical 

thinking. This was a time where the corpuscular nature of matter was in question and also the 

commonly held belief was that since light was a wave (continuity) there must be something to 

wave which gave us, of course, the concept of the luminous ether. It was also during this time 

that we substantially developed the concept of fields and the mathematics that describe them. 

We think of fields as being continuous because that is the way we define them mathematically.  

Calculus was developed primarily to deal with continuous or constantly changing 

phenomena. Its usefulness cannot be challenged. How would we find the area under a curve 

without the calculus? As with any such powerful tool it affected our concept of the physical 

world. While references were made to lines of force, field theory reigned supreme. If you place 

some metal filings on a sheet of paper and place a magnet under the paper we can observe 

definite lines, which does suggest structure, and the mathematics of the continuous field does 

not necessarily define structure. In later times we see lines in solar prominences. They both 

have the look of something that is truly discrete. If the magnetic field is continuous why do we 

see lines?  In a lecture in 1881 about the work of Michael Faraday, Hermann Helmholtz refers 

several times to the luminous ether. He did not qualify or question this in any way (neither did 

Poincaré. At this time in history the existence of the luminous ether was, for the most part, a 

given. This concept was to come crashing down in a short time after this lecture. About the 

time of this lecture it was the common belief that science had just about explained everything 

of importance as indeed fantastic things had been accomplished with this linear mathematics 

and the concepts it spawned. The Michelson - Morley experiment upset the cart and the 

luminous ether theory was gone and with it a lot of closely held convictions.  

For a long time electricity was thought of as being a type of liquid. We still speak of the 

‘flow’ of electricity or the ‘force’ of gravity. A few years before the Michelson - Morley 

experiment J. J. Thompson found the electron and the discrete nature of electricity was 

established. 

Plank described the quanta and the foundations of field theory, which seemed so sturdy, 

began to show some cracks. Soon after that Einstein described the photon and it became quite 

obvious that the entire electro-magnetic spectrum was discrete, and as such, must be composed 

of structures. The subatomic particles that make up matter and the quanta of electromagnetic 

radiation are discrete even if they do appear to exhibit wave-like tendencies. The point of this is 

that even though this discrete nature is obvious, the math we use remains the math of 

continuous functions and it is the math that greatly molds our concepts.  

An infinite series is an abstraction even though many mathematicians now tell us they 

can prove that the sum of an infinite series is 1. This thinking, while perhaps useful in 
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mathematical practice, is actually wrong. It is made absurd by definition. Since the series is 

unbounded you cannot physically sum the series anymore than you can approach infinity. This 

is the point at which we really step from mathematics into philosophy.  

I once had friendship with a remarkable six-year-old girl. We became enmeshed in a 

discussion about the nature of infinity. What had started as a childish ‘O yes you can’ argument 

quickly became a real discussion of the nature of counting. After thinking about it for several 

days she dragged me off to the place where we always held serious discussions. “You can 

count to infinity,” she said, quite seriously, “you would have to start counting now and count 

the rest of your life. Then keep counting after you die. You would have to count…..” her mouth 

dropped open as the realization hit her. “You would have to count for - - infinity years.” That is 

also how long it would take to sum an infinite series, proof or no proof. 

That a series such as (
2

1  + 
4

1   +  
8

1   +  
16

1 ……….
n

1 ) is unbounded and, the fact 

that as it progresses, converges toward 1 cannot be challenged. We must remain aware that, like 

the true asymptote, the series never reaches its goal. If the series truly reaches 1 then there must 

be a penultimate fraction. If this fraction cannot be defined then the series never reaches 1. The 

denominators of the successive fractions are integers that are increasing by powers of 2 and 

there is no limit to the potential size of these integers. 

This argument is certainly not new. Supposedly irrational numbers were discovered by 

one of the Pythagoreans named Hippasus of Mentapontum. He was said to have discovered 

irrational numbers on a boating trip when he tried to express 2  as a fraction. Pythagoras was 

said to have believed in the absoluteness of number and so could not accept this and had 

Hippasus thrown overboard and drowned. If he had had the power, Kronecker would probably 

have done the same to George Cantor.  

It has been said that Pythagoras killed Hippasus because he could not prove the non-

existence of irrational number by logic. This is a flawed argument for the reason expressed 

earlier and I cannot imagine it having been made by Pythagoras.  

We have to take this story with a grain of salt. Virtually everything we know about 

Pythagoras and his followers comes to us two or three centuries later and by such writers as 

Plato and later the Neo Pythagoreans. From the original Pythagoreans we have virtually 

nothing. 

Pythagoras was one of the few outsiders who were exposed to the secret knowledge of 

the Egyptian priests. About that knowledge we know absolutely nothing. Our notions about the 

construction of the Egyptian pyramids is another example of how, when we have decided in 

our minds that something is true, we totally ignore the logic that shows that it is wrong. It is 

estimated that the construction of the great pyramid required two and a half million stones. It is 

also believed that it was constructed in something Like twenty-three years. 

23 years is 8399 days, counting leap years. That is 298 stones a day, which works out to 

around twelve and a half stones an hour. That would mean a stone roughly every five minutes. 

 That is assuming they worked twenty-four hours a day seven days a week. Let’s assume 

perhaps they worked ten-hour days. Then they would have needed to lay a stone about every 

three minutes, again working seven-day weeks for twenty-three years. A stone every three 

minutes is the figure that most Egyptologists use.  
Think of the logistics of that. The stones would have to have been quarried, moved to 

the site, cut to shape and dragged up the pyramid. Unless they had a way to levitate the stones 

and direct them into place they simply could not have built that pyramid in twenty-three years. 
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They would have needed a technology that would have been close to magic. Without such 

magical technology they would have struggled to build that pyramid in a century.  

If they did not build the pyramid in twenty-three years it certainly was not a tomb. Even 

the most altruistic Pharaoh would not build a monument like that for his great grandson. 

Quite possibly Pythagoras’ interest in the nature of the right triangle was that the three 

basic integers that are the primary solution of the theorem a
2
 + b

2
 = c

2
, those being 3, 4, and 5, 

are three integers that are the foundation for the entire enharmonic system that defines all 

music. The development of the complete enharmonic system requires nothing more than basic 

arithmetic. It would have been well within Pythagoras’ mathematical skills. Everything in 

music can be created by nothing more than multiples and powers of these three integers. 

Pythagoras felt that the system of number started with 3, that 1 and 2 did not exist.  

 Let’s take a closer look at the effect of irrational numbers in music.  

 
THE TEMPERED SCALE 

 

 Music affords us the best example of this linearizing of non-linear phenomena. The 

twelve-tone system, which really only arose to satisfy the tuning problems of keyboard 

instruments, has become the primary tenet of contemporary music theory with disastrous 

results. One problem that has appeared on the music scene is that of hearing loss associated 

with the high volume many listeners prefer today. This is not so much the amplitude of the 

sound but by the deadly beat structures created by tempered tuning and the linear sound of 

modern synthesizers and reproduction systems. 

 Paul Hindemith once said that the ability to withstand tempered tuning is akin to the 

ability to adjust to pain. The same can be said about the synthesizer. 

 The dodecaphonic system has given birth to the tonometric system. By linearizing a 

non-linear system, in this case the chromatic scale, we have the notion that musical intervals 

can be measured and the elements on this linear yardstick are the cents of the tonometric 

system. The cent is the hundredth root of the twelfth root of 2, 10012 2 . A tonometric cent then 

is:   
12002 =  1.0005777895065548592967925757932  

 

 The common defense of the tonometric system is that it offers a more precise way to 

measure intervals. This makes absolutely no sense and yet research papers in acoustics are rife 

with such references. 
3

4  and 
198

264  are both ratios that produce a decimal value of 

1.3333333…. In this respect they are similar but can we state that the ‘distance’ between the 

numeric pairs that form these similar intervals are equal? If we let the digits of these fractions 

be cps we can see that for every cycle of 4 there are 66 cycles of 264. In the tonometric system 

both intervals would be 498.045 cents, just as both just tuned intervals are decimally 1.333333. 

The cents of the larger interval would be 66 times ‘smaller’ than the smaller interval. The 

tonometric system gives us nothing that we don’t already have and obscures what we do have 

 Alexander J. Ellis, in 1885 translated Helmholtz’ “On The Sensations of Tone”. In it he 

converted everything into the tonometric system. Fortunately he did it all with footnotes so this 

edition still contains the Helmholtz original. The text of the footnotes nearly rivals the text of 

the original document. In a rather large appendix Mr. Ellis explains the tonometric system as 

well as why he used it. He stated that any music system must be related to the tempered scale 
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to be analyzed. There is no physical justification for this statement. This was more than a 

century ago and the same thinking governs most of musical theory to this day as will soon be 

shown. 

 It is hoped that the Structural Resonance papers have established the fact that the 

tempered scale is acoustically, mathematically and musically useless. We cannot state that the 

tempered scale is wrong, as right and wrong have no meaning here. The tempered scale does 

exactly what it was designed to do, that is, to linearize the non-linear natural chromatic scale. 

As such it has no use in musical theory. It is a rather clumsy tool that has outlived its 

usefulness. 

 Mr. Ellis offers several methods of conversion to the tonometric system. In some of 

these he used logarithmic means. As with irrational roots, logarithms are of no use in musical 

or for the most part, acoustical theory. This preponderance of tonometric examples is 

unfortunate as it clouds an otherwise fine translation and some interesting observations made 

by Mr. Ellis. So often we find a paper on some aspect of musical theory that starts with an 

interesting premise only to see it lapse into the tonometric system. 

 A good example of this is in a study of ancient Peruvian pan flutes. The Quechua 

people created amazingly fine musical instruments. They made trumpets out of clay. This clay 

shrinks about ten percent when baked in a kiln. They made their instruments oversized by the 

exact amount necessary to allow for the shrinkage. The end results were remarkably in tune 

with one another. They used this technique to fashion pan flutes as well. Many of the pipes of 

individual pan flutes were tuned to very small intervals. The papers written by the musical 

anthropologists list the intervals in the tonometric system, which totally destroys any notion of 

what the function of these tunings might have had. The best explanation would be that they 

were used for comma displacement and, were that to be true, the ancient Peruvian music would 

have had a sophistication of which we are quite unaware. We can be quite sure that the ancient 

Peruvians did not use the tempered scale. All we need to know are the actual pitches of the 

pipes and these are never listed. We have to wonder how many other areas of study are clouded 

by this knee-jerk adherence to linear systems. 

 Here is a section from Mr. Ellis’ appendix describing how to convert musical ratios into 

the tonometric system. After explaining how to raise a tone an octave by adding 1200 cents he 

offers this: 

 
3. If the reduced interval ratio be such that 3 times the larger number is greater than 4 times the 

smaller, but twice the larger number is less than 3 times the smaller number, then multiply the 

larger number by 3, and the smaller number by 4, for a new interval ratio, and add 498 cents to 

the result. 

 

He goes on to provide an example: 

 
Ex. For 32:47, then 3 x 47 = 141 is greater than 4 x 32 = 128, but 2 x 47 = 94 is less than 3 x 32 

= 96. Hence we use the interval ratio 128:141 and add 498 cents to the result. If however as in 

32:49, twice the larger number or 2 x 49 = 98, is not less than 3 times the smaller or 3 x 32 = 

96, we use this interval ratio 96:98 or its equivalent 48:49 and add 702 cents to the result. In the 

first case the given interval having the ratio 32:47 lies between a Fourth and a Fifth, in case it is 

greater than a Fifth, but in both cases the reduced interval ratio 128:141 or 48:49 is less than a 

Fourth. The object of this reduction, which is seldom necessary, is to have to deal with ratios 

less than a Fourth. So much for the tonometric system. 
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 A more practical method of converting musical intervals into the tonometric system is 

with the formula: 

alog  * 
2log

1200
= interval in cents 

  

 Where a is the decimal value of the interval to be converted. 1200 is used to define the 

octave. If we use the perfect fifth,  

 

1.5, log1.5 = 0.17609125905568 and log2 = 0.30102999566398, thus 

0.17609125905568 x 
5663980.30102999

1200
 = 701.955000865 cents 

 

 Contemporary theorists will often define a deviation from a true interval in terms of the 

tonometric system. To state that an interval misses the perfect fifth by 4 cents says absolutely 

nothing. It would make just as much sense to state it misses the desired pitch by a ‘little bit’. 

This error, no matter how large or small will always be the ratio of two discrete pitches. It is 

physically impossible for it to be anything else. A perfect fifth is precisely 
2

3 or 1.5. It is not 

701.955 cents. Consider how the perfect fifth looks when written mathematically in the 

tonometric system: 

  955.701
12002  

 

 And even then it is not quite perfect. This works out to a value of 

1.4999999992501989393103473376758. Of what use is a system in which the only interval that can 

be precisely defined is the octave? 

Since so much contemporary material uses the tonometric system here is table of the 

intervals of the enharmonic system converted into their tonometric equivalents.  The first 

column lists the true musical intervals as defined the earlier sections of these papers. The 

second column list the power to which 12002  must be raised to approximate the true interval. 

  
1.04166 70.67243  1.48148 680.448715 

1.0546875 92.178715  l.5 701.955 

1.066666 111.731285  1.5625 772.62743 

1.111111 182.403715  1.5802469 792.18 

1.125 203.91  1.6 813.686285 

1.13777 223.46257  1.6666 884.358715 

1.171875 274.58243  1.6875 905.865 

1.185185 294.135  1.706666 925.41757 

1.2 315.641285  1.7578125 976.53743 

1.25 386.313715  1.777777 996.09 

1.265625 407.82  1.8 1017.596285 

1.28 427.37257  1.875 1088.268715 

1.333333 498.045  1.8962962 1107.821285 

1.35 519.551285  1.92 1129.32757 

1.388888 568.71743    

1.40625 590.223715  1.0125 21.506285 

1.422222 590.223715  1.024 41.058855 

1.44 631.28257  1.011358 19.55257 
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 The question that arises is; what can these cents be used for? I have seen endless texts 

with intervals listed as cents but I have never once seen them used for anything beyond the 

listing itself. Even if a use exists it would be valid only for the tempered scale. 

 Any variation in the intervallic ratio of the perfect fifth will always be rational. An 

interval is the result of two sounding frequencies both of which are, by definition, discrete. An 

irrational interval is a physical impossibility. 

 The bulk of contemporary thinking as to music theory comes from our musical 

calligraphy. If we play a fifth on the piano on the lower end of the keyboard and then play the 

same fifth on the higher end of the keyboard the two intervals appear to be the same size. This 

is also true in the calligraphy. A fifth in the bass clef is exactly the same ‘size’ as one in the 

treble clef. On the other hand, if a violinist pays a series of fifths his fingers will come closer 

together as the interval becomes higher in pitch. Both the keyboard and the calligraphy make a 

musical scale look isometric. One of the difficulties inherent in playing a violin is that as you 

play an ascending scale the notes, as fingered on the string, become successively closer 

together. This is not a linear change; the changes are discrete and they are not logarithmic. 

Therefore, far from being a precise “measurement”, the tonometric cent decreases in ’size’ as 

the pitch ascends just as does a rational interval. 

 When we speak of intervals as integral fractions we are speaking of ratios of course. 

While we speak of a perfect fourth as being 1.3333333… it is really some octave of 
3

4 , that is, 

6
8  or 

48
64  or 

4338
5784 .  The advantage of using the decimal is that it is always 1.333333… 

regardless of the integers of the ratio.  

 Musical theory can be difficult enough to study without the tonometric system. Many 

elaborate theories have been proposed based on this system but the mere acceptance of 

tempered tuning obfuscates any musical aspects and makes the whole thing useless. A great 

example of this is the Schillinger System. Without complete acceptance of tempered tuning this 

system has absolutely no meaning. It reached its heyday in the mid twentieth century and has 

almost disappeared in recent years. The concepts upon which it was constructed are still very 

much with us today. 

 The Schillinger System reads more like a calculus primer than a method of musical 

composition. His entire system comes crashing down on two pages, the preface to Book V, the 

Special Theory of Harmony. This comes after 352 pages of rhythm and scales. He gives us 

Monomial Axial Combinations and Binomial Axial Combinations and Polynomial Axial 

Combinations and myriads of other similar things. We see many graphs and even the Golden 

Mean. He gives logarithms and geometric inversions. All of these are linear tools. He also 

states that there are 462 seven-unit scales. He then offers this: 

 
Chord-structures, contrary to common notion, do not derive from harmonics. If the 

evolution of chord -structures in musical harmony had paralleled the evolution of harmonics, 

we would never have acquired the developed forms of harmony we now possess. 

To begin with, a group of harmonics when simultaneously produced at equal 

amplitudes sounds like a saturated unison, not like a chord. In other words, a perfect harmony 

of frequencies and intensities does not result in musical harmony but rather in a unison. This 

means that through the use of harmonics, we would never have arrived at musical harmony. But 

actually, we do get harmony and for exactly the opposite reason. The relations of the sounds we 

use in equal temperament are not simple ratios (harmonic ratios). 
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 The relations of the sounds used in equal temperament not only are not simple ratios but 

they are not ratios. Everything in music comes from harmonics. Mr. Schillinger makes the 

common mistake of thinking that music is something invented by man. Music is a natural event 

that governs all sound and, quite likely, all vibration. It is innate in man and shows itself in 

every culture with exactly the same structure. 

 He confuses the overtone structure of a tone with a harmonic structure comprised of 

separate complete tones. He totally overlooks the differential tone, which governs and 

structures all music. He forgets that a sounding tone and an overtone partial are two quite 

different things. It is believed that the partials are so called pure tones. This is not quite correct. 

Even if it were, it is impossible to create a pure tone acoustically. 

 The Fourier transform breaks down a complex wave into specific sine waves. This does 

not mean that the overtone partials are in fact sine waves. The overtones are part of a structure 

and do not exist as independent entities. If the partials were sine waves we should be able to 

take the results of such a transform (harmonic analysis) and by sounding the proper sine waves 

en masse at the proper times recreate a natural sound. That does appear to work, or at least not 

very well. 

 When we combine three sounding tones to form a triad we are sounding three distinct 

overtone series. If three flutes play a triad we hear a distinct sound.  

 They will play this triad amazingly close to the series,  
6 

5 

4 

 Contrary to Mr. Schillinger’s assertion they will never, ever play these approximations  

 
1.4142135623730950488016887242097 

1.3348398541700343648308318811845 

1.2599210498948731647672106072782 

 

  If they played this tempered triad the three flutes would have the same overtone 

structures individually that they had when playing the true triad. If they attempted to play this 

tempered triad these overtones would interact with each other and form what can only be 

described as an acoustical mess. This of course happens every time with instruments tuned to 

the tempered scale. Can there be a more dreadful sound than Romantic pipe organ tuned with 

tempered tuning? Unless, perhaps an electronic organ.  

 Mr. Schillinger forgets that even the first theories of the tempered scale came rather late 

in the development of common practice harmony. Even during the centuries of plain song the 

practitioners of the art were well aware of the fact that some tones of the modal scales had 

more ‘weight’ than others. By the time of the baroque the chromatic scale was fully developed. 

The first true theoretical proposition for a tempered scale is attributed to Werkmeister in the 

1690s’ that was the time when the baroque was at its peak. Even Werkmeister’s scale did not 

have isometric intervals.  

 Contrary to Mr. Schilinger’s views the tempered scale had nothing whatsoever to do 

with the development of western harmony. There is no way such a harmonic system could have 

grown out of the tempered scale. 

 Here is the rest of the excerpt for the preface to Book V. 
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When acousticians and music theorists advocate "just intonation", that is, the intonation 

of harmonic ratios, they are not aware of the actual situation. On the other hand, the ratios they 

give for certain familiar chords, like the major triad (4:5:6), the minor triad (5:6:15), the 

dominant seventh-chord (4:5:6:7), do not correspond to the actual intonations of equal 

temperament. Some of these ratios, like 
7
/4, deviate so much from the nearest intonation, like 

the minor seventh which we have adopted through habit, that it sounds to us out of tune. 

Habits in music, as well as in all manifestations of life, are more important than natural 

phenomena. If the-problem of chord-structures in harmony were confined to the ratios nearest 

to equal temperament, we could have offered (16:19:24) for the minor triad, for example, as 

that ratio in fact approaches the tempered minor triad much more closely than (5:6:15). But, if 

accepted, this would discredit the approach commonly used in all textbooks on harmony, for the 

following reason: if such high harmonics as the 19th are necessary for the construction of a 

minor triad, what would chords of superior complexity, which are in use today, look like when 

expressed through ratios? When a violinist plays b as a leading tone to c and raises the pitch of 

b above the tempered b, his claims for higher acoustical perfection are nonsense as the nearest 

harmonic in that region is the 135
th
. 

Facing facts, we have to admit that all the acoustical explanations of chord-structures -- to 

the effect that they are developed from the simple ratios -- are pseudo-scientific attempts to 

rehabilitate musical harmony and to give the latter a greater prestige. Though the original 

reasoning in this field resulted from the honest spirit of investigation of Jean Philippe Rameau 

(Generation Harmonique, Paris, 1737), his successors overlooked the development of 

acoustical science. Their inspiration was Rameau-plus their own mental laziness and cowardice. 

The whole misunderstanding in the field of musical harmony is due to 

 

    (1)   underrating habit 

(2)   confusion of the term "harmonic" in its mathematical connotation -- i.e., pertaining 

to simple ratios -- with "harmony" in its musical connotation i.e., simultaneous 

pitch-assemblages varied in time sequence. 

 

Thus, musical harmony is not a "natural phenomenon," but a highly conditioned and 

specialized field. It is the material of musical expression, for which we, in our civilization, have 

an inborn inclination and need. This need is cultivated and furthered by existing trends in our 

music and musical education. 

 

 He could not have been more wrong if he tried. If we express the minor triad and the 

dominant seventh chords in the tempered scale we get the same insidious complexity we got 

from the major triad with even more catastrophic results. While 4:5:6 is the major triad he is not 

quite correct in expressing the minor triad as 5:6:15. Since he expresses the major triad in close 

position the minor triad should be as well, thus 10:12:15. He misses the dominant seventh 

completely as 7 has never been a part of the harmonic system. It sounds flat because it doesn’t 

belong and is never, ever used and never has been used. The dominant seventh that is used and 

has been since its appearance is, in root position, 36:45:54:64. 

 The eleventh overtone is near to the perfect fourth . 

 

8
11 = 1.375 is near to 

3
4  = 1.3333 

 

 It is not a member of the enharmonic system but is occasionally used by the trumpet 

when a true fourth is difficult. Because of this it is often referred to as the ‘trumpet fourth’. It is 

much less disturbing to the ear than 7. 
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 His use of 16:19:24 makes absolutely no sense. The last thing we would want to do is let 

the tuning of a chord approach the tempered scale. He is completely in the dark about the 

leading tone. The leading tone, related to the root of the scale is 15, and this is what the violinist 

plays, always. 135, which represents one form of the minor second above the root (the object of 

resolution of the leading tone) is also the alternate value for the minor second that exists to 

allow a comma shift when moving to anther key. The third of the tempered scale actually 

replaces the Pythagorean third (1.265625) and not the proper third (1.25) 

 

12 4
)2( =  1.2599210498948731647672106072782 

 

782767210607298948731641.25992104

265625.1
 =  1.004527228198626230116313724852 

 

1.25

782767210607298948731641.25992104
 =  1.0079368399158985318137684858226 

 It is the tempered scale and its offshoot, the tonometric system that is the pseudo-

scientific attempt. Making the chromatic system metric is absurd. Distances, weights and 

volumes make sense when made metric as they are fixed quantities. A meter is always a meter. 

A liter is always a liter and a gram is always a gram. They are constant, they don’t become 

smaller as their values increase. The harmonic system, as it exists, is far more than 

‘simultaneous pitch-assemblages varied in time sequence’.  

 
4

5  is a major third. So is 
60

75  or  
1620

2025 . While these ratios all produce the same 

decimal quantity the intervals themselves are significantly different and attempts to make them 

metric are pointless. 

 

TWELVE TONE MUSICAL COMPOSITION 

 
 The dodecaphonic or twelve-tone system of musical composition arose from conditions 

that actually were not musical and not for the reasons usually put forth. When the Western 

traditions began in the Middle Ages formal music was largely created in and for the church. 

There was, as there always is, a traditional folk music and later the music of the Troubadours 

and Trouvères. As stable monarchies arose we got as well the music of the court. This 

continued through the eighteenth century. Hayden and Mozart were primarily court musicians. 

In the nineteenth century things changed considerably as the composer emerged as a popular 

figure. We had the age of the ‘Composer as Hero’. This was the age of the romantic virtuoso 

and when opera became the spectacle entertainment.  

 In most societies music and musical traditions are quite static. The East Indian Raga is 

quite the same today as it was centuries ago. Perhaps because of the invention of musical 

calligraphy our music went through what appeared to be evolutionary changes. These changes 

are usually more fashion than actual. There were three distinct periods each of which was 

considered in its time to be quite unique. Medieval music progressed from the plainsong of the 

chant to the organum to true linear counterpoint.  

 Until the early twentieth century musicologists considered the complexities and 

dissonances of medieval composers to be a crude lack of skill. This is the result of looking at 

earlier cultures through contemporary eyes. Early composers possessed consummate skill. The 
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age of plainsong was not called the ‘Golden Age’ for no reason. These composers were quite 

aware of the vertical sounds of linear counterpoint. The difference between linear counterpoint 

and sixteenth century counterpoint was the enharmonic system. Where sixteenth century 

counterpoint was governed by the changing fundamental, linear counterpoint did not change 

the fundamental. The use of vertical sounds for the medieval composer was a palate of sounds 

he used for expression, just as with the melodic lines themselves. Such composers were quite 

aware of the dissonances they produced. The big difference was that the medieval composer 

did not think harmonically. 

 In the late fifteenth and early sixteenth centuries the style had become so complex as to 

be virtually unworkable. Bewildering complexity, just as with many contemporary ideas, were 

taken to be the mark of artistic creation. 

 Periods such as this are not uncommon historically. The human need to codify and 

standardize things arises and imagination, the basic stuff of creativity, is pushed aside and the 

mark of a skilled practitioner is his spouting of official dogma and memorization of endless and 

closely held models. Wagner’s Die Meistersinger deals with just such an historical situation 

 This gave way to the harmonic simplicity of the Elizabethan period, which led to the 

baroque and its changing tonalities, which again became very complex. While not so complex 

as the late Medieval Period it did lead to the more formal Classical Period. The early classical 

period was again a simplifying trend. 

 From the Classic Period came the tools that were to make the nineteenth century 

Romantic Period so vibrant. Among these were the roots of the modern symphony orchestra 

and the concert grand piano.  

 One rather unique feature of Western music is that appears to evolve (it really doesn’t 

but we like to think it does). If such pseudo-evolution occurred in other music of world we 

cannot tell, as the Western system is the only one we know of with calligraphy so we have a 

history of its development. All other forms of music on the planet are passed from generation 

to generation by rote so all we have the most recent style and form of such music. Tribal 

societies are as a rule quite stable so it may well be that the music of the ¡Kung of the Kalahari 

is the very music that their ancestors would have made in the stone age. 

 Another rather unique occurrence in the later nineteenth century was the rise of the 

scientist as hero. Just about the time the scientist as hero was in full bloom the electronic 

recording and the motion picture radically changed the landscape of the performing arts. Opera 

gave way to the movies as the spectacle entertainment and the artist as hero migrated into the 

popular culture.  

 The so-called fine arts had entered its ‘Meistersinger phase’ and moved into the 

university scene. Since the vibrant thing in university life during this time was science this is 

the format that ‘serious’ music adapted. This gave us dodecaphonic pointillism, musical 

dadaism, musique concréte and their various manifestations as well as many well intended but 

totally misdirected works such as the Schillinger System. Composition became more like 

solving math problems than imaginative musical expression. Composition by formula is always 

the mark of these periods. Composers who chose not to adhere to this risked academic 

excommunication. 

 By the middle of the twentieth century the shibboleth of day was that if a composer’s 

music became even the slightest bit popular he was judged to be pandering to the public. The 

reasoning seemed to be that if calculus is obscure to most people so should music be obscure. 

This was very convenient for such composers. So long as you played by the rules there was no 



 142 

way you could fail. The price for all of this of course was that there was also no way you could 

succeed. The musical metric system fit this very well. ‘Serious’ composers banded together and 

wrote in obscurity justifying this by saying they were writing for posterity, when people would 

finally come to understand their music. What they did not realize, as someone so wisely said, is 

that music that is obscure in one generation is gone in the next. 

 The most durable composition style of the post-romantic school was the twelve-tone 

system. Schoenberg devised a system of musical composition based on, as he put it, ‘twelve 

tones related only to one another’. This is a fallacious premise, as the tones of the tempered 

scale are not intrinsically related in any way (to begin with they do not exist). They are no more 

related to one anther than would be thirteen isometric tones of the octave, or twenty-seven or, 

for that matter, any number. There only validity comes from the chromatic scale they were 

designed to replace. As long as distinct pitches are used atonality is physically impossible. Any 

combination of frequencies will create one fundamental. Even if the ear cannot discern this 

fundamental, it is still there. 

 This really peaked in 1950s and 60s when ‘avant-guard’ actually become a style of 

music composition. Fortunately this waned as the century came to a close. Modern trends seem 

to show a return to real music. In our universities motion picture music, various types of 

‘popular’ music and folk music is now quite acceptable. The thing that holds back a really fine 

period of composition from developing is the tempered scale and its dreadful offspring, the 

synthesizer. 

 The acceptance of irrational values is not confined to music. In most all cases it is the 

product of linear thinking and such thinking often leads unsatisfactory and unusable results. A 

good case in point is the Golden Ratio. 

 

THE GOLDEN RATIO 

 

To start with the Golden Ratio is not a ratio. While we do at times use a rational 

approximation for an irrational number, such as using 
7

22  for , we never make the mistake 

of calling  a ratio.  The Golden Ratio is typically symbolized by the Greek letter φ which, as 

with , gives it a reality that it really does not possess.  
 

In mathematical terms φ is expressed thus: 

φ = 
2

51 
 =  1.61803398874989484820458683436564 

 Two quantities can be said to be in the golden ratio if “the whole is to the larger as the 

larger is to the smaller”. Euclid spoke of it as the Golden Mean and described it thus:  "A 

straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the 

greater segment, so is the greater to the lesser".  

This can only be accomplished if we divide the line with an irrational number. Written 

algebraically it looks like this: 

a

ba 
 = 

b

a
 

which becomes 

b

a
 = 

ba

b


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then 
2










b

a
= 

b

a
 + 1 

and finally 

b

a
 = φ 

 There is no rational solution to this equation. Things become clearer if we look at it 

geometrically. 

 
 

a + b is to a as a is to b 

 

 Simple algebra shows us that φ is irrational. 

b

a
 = 

ba

b


 

If a/b is a fraction in lowest terms, then b/(a − b) is in even lower terms — a 

contradiction. The only solution for the equation  

1

x
  =  

1

1

x
 is  x =  φ 

2045868387498948481.61803398

1
 = 0.61803398874989484820458683 

 We can also observe that φ
2 
= φ + 1.  From a purely mathematical viewpoint the 

Golden Ratio is quite intriguing. It is not hard to see why mathematicians find it so 

compelling. The equation φ =  x  =  1 + 
x

1  can be expanded recursively to obtain a continued 

fraction for the Golden Ratio. 

φ = [1; 1, 1, 1,….] = 1 +  

...........1

1
1

1
1

1
1

1
1

1










 

This is rather elegant way to describe irrational numbers. The successive convergents 

of these continued fractions are ratios of Fibonnaci Numbers. This is where things start to get 

interesting.   
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THE GOLDEN RATIO AS GEOMETRY 

We also see this in the succession of powers of φ. 

φ = φ 

φ
2
 = φ + 1 

φ
3 
 = 2 φ + 1 

φ
4
 = 3 φ + 2 

φ
5
 = 5 φ + 3 

φ
6 
 = 8 φ +5 

 Both integer columns are Fibonnaci Numbers. This leads us to geometry and the 

relationship of the Fibonnaci Numbers to the Golden Ratio. Johannes Kepler wrote: 

"Geometry has two great treasures: one is the theorem of Pythagoras; the other, the 

division of a line into extreme and mean ratio. The first we may compare to a measure 

of gold; the second we may name a precious jewel." 

 In virtually every case the Pythagorean theorem and in all cases the Golden Ratio is 

irrational. The Pythagorean theorem when used as the distance formula is hard to replace with 

anything using rational numbers, or at least nothing as convenient as the distance formula. The 

Golden Ratio is quite something else.From the Golden Mean we get the Golden Rectangle. 
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In the drawing φ   1.62. This is an error of about 1.001215, less than the thickness of the lines of 

the drawing. If we create a similar graphic using the Fibonnaci pair, 8 and 3 we obtain: 

 

This is virtually indistinguishable from the previous graphic. Even the simpler 

Fibonnaci pair 5 and 3 creates a graphic in which the difference between it and the Golden 

Rectangle is virtually indistinguishable.  

 
  The differences become even more difficult to detect when the graphic 

representation grows larger as with buildings.  
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A graphic represent the Fibonnaci series, as a series, is this: 

5
3

8

13

21

34

 
 A similar representation of the series derived from φ would be actually impossible to 

draw, however it would look almost exactly as the above image.  

This image when based upon φ is said to define the logarithmic spiral, often called the 

golden spiral. 

 

 

 If we were to use the image derived for the Fibonnaci series we would obtain a spiral, 

which, as with the image itself, would be discrete. A spiral fashioned with either the Fibonnaci 

rectangles or the Golden Mean rectangles would be visually indistinguishable. An approximate 

representation of either spiral can be fashioned by connecting the diagonally opposite points of 

each rectangle with an arc. When this spiral occurs in nature it will be discrete. Logarithms are 

another of our many abstract tools, useful but not real. As with the rectangles, the spiral drawn 

from the Fibonnaci series and the one drawn from the Golden Ratio are virtually 

indistinguishable. 
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  Just a circle can be described as a polygon with an infinite number of sides; the 

logarithmic spiral can be fashioned in quite the same manner: 

 

 A curved line is an abstraction for the same reason the circle is and thus any true geometric 

spiral is abstract.  

THE GOLDEN RATIO IN ARCHITECTURE 

 

 While the ancient world had knowledge of trigonometric relations it is sometimes 

difficult to tell to what degree they used them. For instance there do not seem to be any 

theodolites much before the sixteenth century even though the ancients had a remarkable 

understanding of trigonometry. For us to say they used the Golden Ration as a tool is, perhaps, 

attributing to them a sophistication they did not possess or tools that they did not need.  

 Perhaps the most prominent example of a structure that was supposed to have been 

crafted by use of the Golden Ratio is the Parthenon. Here is a picture used to illustrate this. 

 

 
 

 The white lines are either the representation of φ as a series or a graphical representation of the 

Fibonacci Series. If we think of each rectangle as being proportionally equal we can state that the 

large rectangle is a Golden Rectangle. On the other hand if we assume this is a Fibonacci series then 

we say that if we divide the smallest rectangle into two squares the largest square would eight times as 

large as the smallest and the width of the Parthenon would be thirteen times the smallest square.  
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 Of one thing we can be reasonably sure, neither Ictinus, the chief architect, nor his associate 

Callicrates, used a design based on φ to set the size of the front of the Parthenon. Vitruvius, whose 

knowledge was drawn heavily from both Greek and Roman architecture, never mentions it in the ten 

books. If it had been a tool of the ancient architects one would think he would at least referred to it.  

 If we assume this is a Fibonnaci series then the basic unit of measurement would be the width 

of the smallest rectangle. This width would equal half the length of the smallest rectangle. This basic 

square would then provide all the larger measurements. The height of the columns would be 5 units, 

the height from the top of the columns to the bottom of the roof would be 1 unit and from the top of 

the columns to the tip of the roof, 3 units. The width would be thirteen units. 

 In all probability they used neither the Golden Ration nor the Fibonnaci series. My guess they 

made all the rectangles equal to 8:5 (or 5:3). We shall see why later in the article. 

 Discounting 
1

1  the first four Fibonnaci pairs are ratios found in music. 

 

  
1

2
   =   2.0     Octave    

3

5
    =  1.66666…   Major Sixth 

  
2

3
    =  1.5      Perfect Fifth  

5

8
    =  1.6     Minor Sixth 

 

 This has really no actual connection to music theory, as theory, but architecturally they are 

significant. The ratios of the various dimension of any structure greatly affect the stationary acoustic 

structure that forms within them.  These basic ratios appear in many areas of the natural world. 

 There is no evidence that the Golden Ratio was used at all in world before the Renaissance (if 

indeed it was used then). The most significant architect of the ancient world was the first century 

A.D. Roman architect, Vitruvius. Vitruvius is quite explicit about the dimensions that buildings and 

theaters should employ. No mention is made of the Golden Ratio. The numbers he specifies are all 

the basic small integers that are also the building blocks of the enharmonic system.  

 The Ten Books on Architecture by Vitruvius were the Bible of architects from the first 

century, when they were written, until well into the Renaissance. All the great cathedrals were 

constructed using the Ten Books as a guide. The manuscripts of the books survived due to the 

Scriptos of Charlemagne who maintained a library for such books. 

 A recent study of the Cathedral of Notre Dame of Paris uncovered the fact that the ratios 

between the various dimensions of the cathedral were the simple ratios the Vitruvius set forth in the 

Ten Books on Architecture. This should not have surprised them as it apparently did.  

 If we were to construct a rectangle with sides equal to 5 and 3 the ratio produced would be 

1.6666…. This is very close to the Golden Ratio. This fact has not gone unnoticed and, in fact, is 

mentioned often in treatises about the Golden Ratio. Unfortunately we are glued to φ just as we are 

glued to the notion that the concert A must be 440Hz.  

 The difference between 
3

5 and φ is 1.0300566479164914136743113906094. This is a very small 

difference. As a musical interval it lies between the enharmonic comma (1.024) and the small minor 

second (1.04166666666667). Audible? – yes. Visual? – I doubt it. In both cases the ear would respond to 

the difference as would the eye but the brain would most likely ignore it. 

Let us assume the dimensions of the front end of the Parthenon are equal to 50 feet and 30 

feet. It would look like the Parthenon. The non-Golden Ratio would be 1.6666… Suppose we want 

this front end to produce the Golden Ratio. One method of achieving this would be to make the 

height a hair over ten inches higher. The result would not look conspicuously different from the 50’ 
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x 30’ version. If we were to adjust both the height and width simultaneously the changes would be 

only a couple of inches. 

5:3 as a ratio was quite well known to the Ancients. This fact is mentioned often by 

many writers. We can never really know but it would seem much more likely that the 

designers of the Parthenon used 5:3 or 8:5, just as did later architects.  

A thought about ratios. The fact that 
3

5  = 1.66666… is, structurally or visually 

speaking, rather meaningless. What these decimals can provide is shorthand for manipulating 

these fractions. Apart from this there are no intrinsic properties in these decimals.  

Starting with the innermost rectangle the decimal values of the successive ratios  (

h
w.............

5
8,

3
5,

2
3,

1
2,

1
1 ) present an interesting pattern. 

(1.0) 

2.0 

1.5 

 

1.6666… 

1.6 

 

1.625 

1.61538461538461538461538461538462 

 

1.61904761904761904761904761904762 

1.61764705882352941176470588235294 

 

1.61818181818181818181818181818182 

1.61797752808988764044943820224719  

 

This is an asymptotic series that really begins with 2.0, as 1.0 merely defines the unit 

length. It must be remembered that defining the ratios as decimals is the same as defining them 

as intervals, as would done with sound. 1.625 does not define the rectangle, 13:8 does. The same 

is true for intervals and frequencies. The first pattern, 2.0 and 1.5, defines the basic shape of the 

Fibonnaci pairs, one high then one low. The pattern 1.6666.. and 1.6, in a manner of speaking, 

marks the end of the series, as every successive pair is a small and progressive deviation from 

the ratios of this second pair.  

The top of every pair becomes progressively smaller than 1.6666… and every bottom 

member becomes progressively larger than 1.6. Now mathematics takes over completely and 

these decimals take on a meaning that they really do not have. The members of the successive 

pairs are coming, numerically, closer together. These numbers now become a mathematical 

series that converges to φ. The changes on both the top of pair and the bottom are both 

asymptotic. φ is a true abstraction.  

In mathematics this is represented by the equation: 

 







1

|)1()(|
n

nFnF   

 

For instance, a function that expands to φ in no way makes φ real. The same is true 

with ∞. In truth, 


1    is just as physically impossible as 


1 and for the same reasons. The 
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problem with choosing φ as the Golden Ratio arises because we see the decimals as objects 

instead of markers for the height and width of successive rectangles. This is the way we do 

things mathematically and in this case we are looking through the wrong end of the telescope. 

We are looking at this convergence absolutely backwards.  

We can use these decimals to define the amount of change between each progressive 

pair, for instance, the ‘distance’ between 1.625 and 1.61538461538461538461538461538462, which is 

 

8462615384615353846153841.61538461

625.1
= 1.0059523809523809523809523809523 

 

If we chart these we get 

 

3

5
  (1.6666666666666666666666666666667) 

1.04166666666666666666666666666667 

5

8
  (1.6) 

0.984615384615384615384615384615385   (1.015625) 

8

13
 (1.625) 

1.00595238095238095238095238095238 

13

21
 (1.6153846153846153846153846153846) 

0.997737556561085972850678   (1.00226757369614512471655328798) 

21

34
 (1.6190476190476190476190476190476) 

1.0008658008658008658008658008658 

  
34

55
(1.6176470588235294117647058823529) 

0.99966953073364177131526768010    (1.00066126630694624684106) 

55

89
 (1.6181818181818181818181818181818) 

1.00012626262626262626262626262626 

89

144
 (1.6179775280898876404494382022472) 

 

This series converges to 1. This makes sense, as the Fibonnaci Series is a set of ratios 

whose numerator and denominators are increasing in value. As the fractions progress they 

approach 
x

x .  As they increase, the ratio between them converges to 1.0. We can now 

interpret the Golden Section and the Golden Ratio from a different viewpoint. The 

convergence of successive ratios to φ describes successive moves away from something not 

toward it. The truly remarkable thing about the series is that the every successive pair is a 

slight deviation from the pair, 3:5 and 5:8. 

This deviation is always so small that the eye would see every Fibonnaci rectangle as 

looking like 3:5 or 5:8. This is the magic pair. We have a Greater Golden Ration (3:5) and 

Lesser Golden Ratio (5:8). The Golden Ratio is either 1.666666… or 1.6, not an abstract point 
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between them. 3:5 would be the preferred version simply because it is made up of smaller 

numbers. Ockham’s Razor! 

The mere fact that we are dealing with the numbers 3 and 5 causes us to take a look at 

music and its effect on architecture. 

Structurally the Fibonnaci Series stops at 8. Consider our 50’ x 30’ Parthenon. It is now 

8:5. If we altered the dimensions to 49’ x 31’ we would get a ratio very close to 5:8. It would 

take keen eye to distinguish between 5:3 (50’ x 30’) and 8:5 (49’ x 31’). Of all the consecutive 

pairs of ratios in the series this has the most detectable difference. Each successive change is 

less than it predecessor. Starting with 5:3 every Fibonnaci rectangle looks to the eye as either 

5:3 or 8:5. Some similarity between graphics and music can be seen when we express both as 

decimals. 13 does not enter the graphic system as it produces 1.625 and both 5:3 and 8:5 produce 

more useful ratios. The same is true in music for the same mathematical reasons. In a scale 

with the fundamental = 1, 13 produces the note 1.625. The system already has the more useful  

 

...66666.1
3

5   

or  

6.1
5

8  . 

 

In music the ear simply will not tolerate anything above 8 in Fibonnaci Series. The 

entrance of 13 into the enharmonic system creates dreadful beats, which, in turn, spawn even 

more dreadful second-generation differential tones. The higher frequencies become even 

worse. On the other hand it would seem that the eye is not so meticulous. I suspect that the eye 

accepts everything from 5:3 to that nebulous fraction that produces φ and probably interprets it 

the same, quite likely as 5:3. Indeed, would 5:3 really be more pleasing to the eye than 89:55? Is 

such a ratio even part of the brain’s interpretation? I am guessing that it is and the brain prefers 

5:3.  

Another interesting convergence arises if we explore the ratios formed between 3:5 and 

each successive Fibonnaci pair. 

 

3

5
 

1.02564102564102564102564102564103 

8

13
 

 

3

5
 

1.03174603174603174603174603174603 

13

21
 

 

3

5
 

1.02941176470588235294117647058824 

21

34
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3

5
 

1.03030303030303030303030303030303 

34

55
 

 

3

5
 

1.02996254681647940074906367041199 

55

89
 

 

 This converges to 1.0300566479164914136743113906094 which is the difference between 

5:3 and φ. This gives a better illustration of the nature of this convergence. 

 
MOTION, ENERGY, GRAVITY and TIME 

 

 It should not be surprising that a treatise on the enharmonic system should progress to motion,  

energy, gravity and time, as music exists as a result of all of them. Even with all of the wonders of today’s  

science there are four fundamental things we cannot really explain, motion, energy, time and gravity.  

The basic components of music, which is vibration, are motion, energy and time. Gravity, of course,  

affects everything and is perhaps the most mysterious thing of all. 

 The most difficult thing to explain about motion is inertia. Why does an object once set in 

motion continue to move until another force changes that motion? We cannot sense motion. We 

can only sense changes in motion. We say that the people in an orbiter are traveling at seventeen 

thousand miles an hour but those in the orbiter feel absolute no sense of this motion. If they had 

no instruments and could not see out they would have no way of knowing if they were moving or 

not. On the other hand someone on the earth definitely sees them moving at that colossal speed. 

Since neither the occupants of the orbiter nor the observer on the ground have any sense of 

motion something in the orbiter must have changed when it was accelerated to that speed.  

In the Doxographists, Plato referred to a Pythagorean concept of motion: 

 

Motion is a certain otherness or difference in matter. [This is the common limit of all motion.]  

 

 This may be as good a definition as we will ever have. When we consider motion in 

terms of what it does, that is, change position in space, we run into the paradoxes, the most 

famous of which are those of Zeno of Elea some twenty-six centuries ago. These are put forth as 

paradoxes of motion when in fact they deal with continuity and thus are applicable to any form 

of continuous structure - such as time or fields. 

In order to cross a room I must first travel half the distance, then half the distance again 

and then again and on and on. By definition I cannot cross a room. This quickly becomes simply 

another argument as to the nature of the infinite series, in this case: 

n

1
.......

32

1

16

1

8

1

4

1

2

1
  
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If we are going to use mathematics to describe our projections of physical reality we 

must observe the rules. It is mathematically impossible for me to cross the room - except for 

one thing. This is better observed in another version of the same paradox. 

A tortoise and a hare move toward a line. The hare begins twice as far as the tortoise 

from the line and moves twice a fast ergo, the hare will cover twice as much distance as the 

tortoise in the same interval of time. The first move is half the distance. This distance can only 

be specified if they both stop. As long as an object is moving it cannot be said to be at any given 

point at any given instant in time. Such a thing as an instant is an abstraction just as is a point. 

We cannot stop time as we can motion so an instant cannot be specified because of the seeming 

continuous nature of time. It is always the next instant. There exists no point that can be said to 

be half the distance, as time does not stop on points. 

 As long as neither the hare nor the tortoise stop the hare has only to travel at a speed that 

is greater than that of the tortoise. The distance each is from the end point is continuously 

changing so the distances that mark the infinite series cannot be specified. Such fractions as 
2

1  

or 
4

1  of the distance occur only if they stop. No matter how far behind he is or how slight his 

speed advantage, the hare will always catch and overtake the tortoise. 

Let’s look at motion from a different perspective. In order for an object to be said to have 

moved it must be in a different position from what it was before it moved. If we let A be in 

position 1 then motion can only have occurred if position B ≠ A. As such there will always be a 

distance between position A and position B.   

Regardless of the size of this distance, since it is both finite and real, it can be divided by 

2, and then by 2 again and on and on. These subdivisions cannot become infinite because then 

the object would not have moved. It is impossible to move in infinitely small steps. There are 

well-formed arguments that state that motion cannot be a continuous function. Exactly the same 

argument can made in respect to time and the same conclusions be drawn. 

The first grand oxymoron in the incredible system that is built on oxymorons, namely 

calculus, is instantaneous speed. On the other hand, it may well be the most useful fiction in all 

of mathematics. There are no instances in time just as there are no points in a distance. While 

time and motion are intimately entwined there is a difference between them. Motion can be 

stopped anywhere. The only way to ‘stop’ time is to move at the speed of light. Even if we could 

isolate an instance the distance would be 0 and thus, so would the speed. So we let the clock run 

a tiny bit so now our instance has length and so reality. It’s length is xx  , where x is, re 

Albert Einstein, a very small number, arbitrarily small says the mathematician. Make them small 

enough and we have value that is very ‘close’ to what the ‘speed’ would be at x if, indeed, 

instantaneous speed actually existed. Relativity tells us we can never accelerate to the speed of 

light. The closer we get the light speed the greater our mass and the slower our clocks run. The 

quanta of electromagnetic radiation do not accelerate; they are created already traveling at light 

speed. 

If a body is moving at a uniform speed the notion of instantaneous speed is unnecessary. 

A falling body is continuously accelerating and it is natural to wonder how fast it is going and 

any given point. What we are really suggesting that if the acceleration could be stopped at a 

given point and the motion of the falling body made constant how fast would it be going. 

Instantaneous speed quickly became ‘the derivative of a real value function’ and we were off to 

the races.  
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The common factor in time, motion, energy and gravity is that we can only define what 

they do, not what they are. Another thing quite likely common to all of these and one that our 

linear mathematics does not show is structure.  

 

STRUCTURE 

 
 There are a number of examples that would seem to indicate structure. Consider a 

tuning fork. If one tine is struck the opposite tine will move instantly in opposition to the struck 

tine. The question is why does the second tine move at all? The usual explanation is that the 

energy travels from the struck tine to the second tine and causes the second tine to move. This 

says absolutely nothing. What does it mean ‘the energy travels to the other tine’? And why does 

it ‘make ‘ the other tine move? 

 We usually get the same explanation for the movement of the balls in a device called 

Newton’s Pendulum. 

 
 

 The common simple explanation for the behavior of Newton’s Pendulum is that the 

‘energy’ travels from the first ball through the middle balls resulting in a movement of the last 

ball. Formulas using the conservation of momentum and the conservation of kinetic energy tell 

us that velocity of any moving sphere after the collision is the same as before the collision. It 

still does not tell us what is actually happening. What does it mean ‘the energy travels though 

the line of balls’? 

 The classic definition of energy is “energy is the ability to do work”. As is so often the 

case, that definition tells us what energy does, not what it is. We do not need to know what 

energy is in order to work with it. Consider kinetic energy. This is the energy a body contains 

as a result of its motion. It can be expressed with a very simple formula. 

Ek = 
2

1
mv

2 

 
Where Ek is the kinetic energy, m is the mass of the object as v is its speed. This is a 

very practical and useful formula; however, let’s look at it from a different perspective. It 

requires a vast prolonged force to put the shuttle into orbit. The crew senses this throughout the 

entire burn of the rocket. Then the rockets are turned off. The shuttle now, from the shuttle’s 

point of view, is at rest. The crew of the shuttle has absolutely no sense of motion and yet, from 

the viewpoint of those still on the earth the shuttle is moving latterly at about seventeen 

thousand mile per hour and is falling at 32 feet per second per second. (32’x s
2
) 

 When the retrorockets fire the crew, who are at rest, sense this as acceleration in a 

direction opposite from the initial acceleration. They certainly feel that they are slowing down. 
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We state that the initial force was converted into kinetic energy but if the crew were completely 

isolated from any outside influence they could find absolutely no indication of this kinetic 

energy. On the other hand something has changed in the shuttle. It sees the earth moving very 

quickly beneath them. Its clocks are running at a different speed than those on the earth. 

 We state that not only does the shuttle have kinetic energy but also potential energy. 

This view is only valid when there is a difference in the motion between the earth and the 

shuttle. If everything else in the universe were to vanish conditions in the shuttle would not 

change. They would consider themselves at rest. 

 What is interesting here is that they would sense the exact same conditions in a 

gravitational field as without one. We will return to gravity later. Consider Einstein’s famous 

equation E = mc
2
. E of course is the energy. It is measured in joules, which is the SI unit of 

electrical, mechanical and thermal energy. It is usually defined as a unit of electrical energy 

equal to the work done when a current of 1 ampere is passed through a resistance of 1 ohm for 1 

second or a unit of energy equal to the work done when a force of 1 newton acts through a 

distance of 1 meter. This covers all bases so far as the science goes. m is the mass measured in 

grams and c is the speed of light in a vacuum, measured in kilometers. 

 The formula is usually understood to mean that mass can be converted into energy. 

Mass is a collection of atoms but once again we are faced with energy and what it might be. It 

is stated that an atomic bomb releases vast amounts of energy. Just as with the energy traveling 

through the tines of the tuning fork or through the successive spheres of Newton’ Pendulum it 

says virtually nothing.  

 When the bomb explodes there is a shockwave created by the rapid expansion of the 

mass of the core. This compresses the surround air and a traveling wave is formed. This 

happens in any explosion. Bombs are also said to release heat. Heat is a condition. It is the 

result of atoms moving (vibration) faster. What must be released is something that causes the 

motion of the atoms to increase. That something is electromagnetic radiation. As many who 

have been near to explosions will testify you can be badly burned even when you are beyond 

the range of the effective shockwave and fragmentation.  

 The bulk of the ‘energy’ that is released from a fission bomb is in the form of soft X-

rays. The air surrounding the bombs is opaque to these rays and when it absorbs them the air 

becomes extremely hot and reradiates soft X-rays. This continues and reoccurs in very brief 

time segments. It is known as radiation transport.  

 The sun does not release ‘heat’. It too releases electromagnetic radiation. We know that 

electromagnetic radiation is discrete. Plank describes the ‘heat quantum’. What he really is 

describing is the discrete structures of radiation. 

 Atoms are structures composed of other structures. When fission occurs nothing is 

released, it is restructured. Even in string theory the strings are discrete vibrations. It appears 

safe to say that we never encounter so-called pure energy. Quite likely there is no such thing, or 

at least nothing that we can define. We are dealing with structure. The very term energy may be 

superfluous. 

 We often speak of ‘pure energy’. We never encounter energy that is not structured. 

What it is that these structures consist of is still an unknown. What we call energy is all that 

really exists in physical reality. If we break it all down far enough there is noting that exists but 

energy and we have no idea what that energy is. We may never know. As long as we 

understand that it is structured and what these structures this lack of knowledge becomes 

philosophical. 
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 Back to the tuning fork and Newton’s Pendulum. The tines of the tuning fork are 

symmetrical and are of uniform density. The spheres of the pendulum are all the same size and 

density. When one tine is struck the other tine moves in the opposite direction with the exact 

period as the struck tine. Due to the shape of fork it cannot be any warping of the fork that 

causes this. A similar thing occurs in a bell where the side opposite the point of impact moves 

opposite the point of impact. The other sides move out when the initial sides move in. The sides 

form a ring and the moving is easier to explain.  

With the fork however this is not the case. Contrary to what is often stated the motion of 

the tine is not simple harmonic motion. This would only be true if the tine did not bend. When 

the tine bends it is deformed and very powerful internal structure is formed within the tine. 

Although it would be slight in all probability the tine itself undulates. This structure is 

longitudinal in nature. We call it a wave but that is largely because that is the way we measure 

it. If we use analog devices to make the measurements we will get analog results. 

We can say that it is an energy structure although that still leaves us with no idea of 

what energy is. The logical explanation of the movement of the opposing tine is that this 

longitudinal structure travels down the stem of the fork. A conjugate is returned which, being a 

conjugate enters the opposing tine and, again by the fact that it is a conjugate creates a mirror of 

the initial structure. It is the structure then that causes the second tine to vibrate.  

The bending of the second tine also creates a similar wave that travels back down the 

stem and another conjugate travels to the first tine. This feedback loop is why the fork vibrates 

for such a long time. There would be a very tiny but cumulative delay between these exchanges. 

It may be that this gradual going out of phase does more to stop the vibration that the friction 

that is usually stated as the cause of the decay. This then is a clear example of motion being 

caused by structure.  

We could construct a version of the pendulum using just two spheres. In this case the 

moving sphere would strike the object sphere and the object sphere would swing out the other 

side just as is does with several spheres. The significant thing is that the moving sphere does not 

decelerate and the object sphere does not accelerate. The object sphere continues the motion of 

the moving sphere just as if the initial sphere were swinging alone.  

The same thing occurs in line of spheres. The last sphere continues the motion of the 

initial sphere just as it does when the moving sphere strikes a single sphere. If two spheres are 

drawn back and released two spheres leave the other side with the same momentum and speed as 

the two initial spheres.  

Rather than a vague explanation that it is the energy traveling through the respective 

spheres it is more logical to assume that, as with the tines of the tuning fork we are dealing again 

with structure. Rather than calling it a structure of energy we shall refer to it as dynamic structure.  

If a billiard ball rolling with no spin strikes a stationary billiard ball the moving ball stops 

instantly and the target ball continues the motion of the first ball. What must happen here is an 

exchange of structures. Inertia and momentum are the same thing. The same phenomenon that 

keeps a moving object moving also keeps a stationary object stationary and that something can 

only be structure. 

The fact that there is no acceleration or deceleration in the two billiard balls when they 

collide reinforces this notion of an exchange of structures. Motion itself must be structural. The 

otherness in matter that Plato referred to must be structure. The structure that moving the 

opposing tine in the tuning fork must be definable. If we could define that structure we could 

make the tine move by feeding the structure to the tine. Since this structure is mechanical it must 
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consist of a frequency pattern, which would be basically the same as those that define the 

enharmonic system. It is vibration that creates the patterns that create a sound, thus it must have 

the same structural pattern.  

If that is true then the highly efficient exchange of structures in the billiard ball collision 

must be the same. The same patterns must also create the sound of the collision. If we knew what 

this pattern was it is quite likely that we would have but feed the pattern to a billiard ball and it 

would move just as of it were stuck by another ball. This could have profound implications.  

The action of Newton’s Pendulum is very efficient as the spheres swing back and forth for 

an amazingly long time. It would appear that it is the friction of the air and the friction of string 

holding the spheres as it move against the device holding it that is most responsible for the 

deterioration of the movement. The exchange of structures seems to add little to this decay. 

Most of the mechanical machines we use are very inefficient. The majority of such 

devices are activated by hitting them with something else. An internal combustion engine is 

operated by hitting the top of the piston with an expanding gas. Guns work the same way. Space 

vehicles are put into orbit by hitting them on the bottom, again with a rapidly expanding gas.  

The collision of the billiard balls and the spheres of Newton’s Pendulum show us that this 

efficiency must come from both the moving and the target spheres being identical in materials 

(which insures similar densities) and shape. In machines that use expanding gas the force hitting 

them is amorphous. The gas attempts to expand in all directions and much of the potential force is 

wasted as heat as well as undirected motion.  

It would seem logical in designing mechanical device to insure that the various parts have 

masses that, with other masses of the device, create ratios that are musical in nature. This alone 

would increase efficiency. It would reduce unwanted oscillation and would require less energy to 

maintain the action of the machine. 

A classic example of this is the cathedral bell. It is critical that the clapper and the bell 

proper be masses that form a simple musical ratio between them. We usually state that it is the 

clapper that feeds an impulse structure into the bell and the sound is formed. It the bell that is 

moving so it is much more logical to assume that there is an exchange of structures rather than 

the clapper feeding a more or less undefined impulse to the bell. This is why the ratio of the 

masses is so critical.  

GRAVITY 

 

 One of the main problems is science, and to a degree in all fields, is that too many people 

wish to be scientists and too few wish to do science. Perhaps it is inevitable but to a great degree 

our universities are becoming more like simple trade schools. All too often students simply 

absorb the material they are given, as to do otherwise might displease the instructor and run the 

risk of a low grade and low grades make it difficult to get a position once college is finished. 

They often become instructors themselves and regurgitate the material drilled into them and ideas 

that should be questioned became dogma. True learning can only happen if the student questions 

every word the professor utters. 

 The events that occurred at the end of the nineteenth century and the beginning of the 

twentieth proved that, contrary to long held (and often still held) belief that physical world is not 

an analog world. Einstein over his life often referred to the fact that the mathematics we use and 

the actualities of the physical world are quite different.  

 An interesting example is gravity. One of the natural occurrences that moved Einstein was 

gravity. He correctly observed that gravity is not a force. While this is obvious it is quite often 
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ignored. A recent documentary on the aspects of gravity had, as its spokesman, a recognized 

physicist from a prominent university. He began by saying that gravity does not pull you down 

into your chair, which is true. However he then went on to state, because of the curvature of space 

around a massive object, gravity pushes you into your chair. This statement was from an 

established physicist. Gravity is not a force; it is a condition. It can neither pull you nor push you. 

 The example Einstein used was a man jumping from a building. Such a man feels nothing 

pulling him down. If it weren’t for the air rushing past him and what he could see as he fell he 

would have no way of knowing he was actually falling. For those few seconds of the fall he feels 

exactly what the astronauts feel when in orbit. 

 When we fall we feel as if we are weightless and yet nothing about our physical makeup 

has changed. We haven’t ‘gained’ or ‘lost’ any energy. We speak of conditions in an orbiter as 

being ‘zero gravity’ when in fact the orbiter and its contents are just as much effected by gravity, 

as they would be if they were ‘standing still’. Standing still that is, as its motion relates to the 

earth. 

 The motion of the orbiter that is at roughly right angles to that caused by gravity does not 

cancel out the effect of gravity. It merely adds another motion. Disregarding rotation and other 

movements the orbiter has two primary motions. It is accelerating toward the center of the earth 

at the rate of acceleration that it would have if it were not moving laterally as to the surface of the 

earth, and it is moving at a tangent to a point on the surface of the earth directly beneath it. If it 

weren’t falling it would continue on the tangent in a straight line. Since it falling as well, this line 

of tangent progresses with the orbiter. It is important to be aware that one motion does not 

‘cancel’ the other. These are two separate and distinct motions. As a pair they control the actual 

change in position of the orbiter. 

 In spite of the more practical explanation by Einstein that the gravitation ‘field’ of a body 

warps or bends the space around we still often hold fast to the idea that gravity somehow pulls 

things down. That is certainly what the physicist who said the gravity pushes us into the chair was 

thinking. We still think of gravity as a force created by a given mass. Mass does not create 

gravity. Gravity is a basic part of every atom in the universe. The atom does not create it any 

more than a proton or the atom creates a neutron or an electron. You can’t have an atom without 

gravity and you cannot remove gravity from the atom. 

 If we try to think of gravity as a propagating force we run into conceptual difficulties that 

defy solution. Newton was bothered by the action at a distance that he assumed gravity seemed to 

entail. This is only a problem if we think of gravity as a force, which it is not. Gravity, this 

warping of space, comes into existence when the atom is created. An atom and its gravity are 

inseparable. Gravity does not propagate. The extent of the gravitational field (we will call it a 

field event though the continuous field may be a fiction) of an atom is there when the atom is 

created, it does not need to propagate as it is already there. 

 Every atom in existence has its own gravitational field. The earth has a large gravitational 

filed simply because it is made up of a lot of atoms. 

 Because of the physical nature of an atom it would seem logical to assume that the 

gravitational field of the atom is structured. The distinct lines that form in solar prominences 

show structure. If this were to be so then it follows that this gravitational field must also ‘warp’ 

anything that is within it. It alters this ‘otherness in matter” that Plato spoke of. An object falls in 

a gravitational field for the same reason that the opposing tine of a tuning fork moves in response 

to the initial tine being struck. They both move because of a change in the structure that is the 

object. 
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 Since there is no such thing as a ‘fixed point’ inertia and momentum are both 

permutations of the same thing. When we sit in a chair we feel our own weight because we are 

still falling. The chair does not stop the falling but inhibits the change of position, which is 

something else again.  The fact that we do not change physical position does not mean we have 

stopped falling.  

Consider a billiard ball being pushed by two cues. The points of the cues are on points 

directly opposite from each other. If the force from both cues is equal the ball will not change 

position. The common explanation of this is that the forces cancel each other. This is not quite 

correct. If we increase the force on one of the cues the will begin to accelerate in the direction of 

the stronger force. We will assume the balls and the cues are in space so that we can disregard 

any friction. 

 If we then make the forces equal again the acceleration stops but the ball and the cues are 

moving in relation to the location where they were before we increased the force on the one cue. 

From the viewpoint of the ball conditions are exactly as they were before this motion was 

initialed. If it were not for the reference point of the initial position we would have no way of 

knowing that ball was ‘moving’ Motion is always relative and always requires a reference point. 

 If we move one of the cues out of line with other the ball will accelerate in a direction 

different from the direction of either cue but caused by the combined action of the force of the 

cues. In physics the directions of the forces are known as vectors and the combined vectors of the 

cues creates a new vector, the result of the addition of the vectors of the two cues.  

 The ball is actually moving in two different directions on any resultant vector. It is 

moving in a straight line in the direction of one force and in a straight line in the direction of the 

other force. The result of the two simultaneous motions is the resultant vector. An object can have 

any number of different motions, each independent of one another. The moon has more than fifty 

separate motions. If we add a third cue on a different spot we have the ball moving in three 

directions. The actual change of location would be a vector comprised of the movement of the 

three cues. 

 The resultant vector will divide the angle formed by the force of the two cues. The 

acceleration of the cues does not change with the change in the position on the ball. The second 

law of motion states that acceleration is equal to force over mass, 
m

Fa  . Changing the 

position of the cues does not alter this in any way. As the angle between the cues approaches 180° 

the apparent speed of the resultant vector slows until at 180° all perceived motion stops, that is, 

there is no change of position of the ball. Both balls still continue to accelerate at the same rate. 

The ball is actually moving in two directions simultaneously. This has nothing to do with the 

change in position of the ball. 

 The same is true with gravity. Anything within a gravitational field accelerates. There is 

no known way to stop this acceleration. As we sit in the chair we feel our own weight, which is a 

product of this acceleration. Not only is the acceleration caused by gravity not a force but also the 

action of the chair does not produce force. The acceleration of our body is structurally transmitted 

to the chair and the chair continues the acceleration just as the spheres of Newton’s pendulum. 

The only force in the action of Newton’s Pendulum occurs when the initial sphere is pulled back 

for the line of spheres. Once the ball is released there is no more force, only momentum. 

The chair, in a manner of speaking, gains the weight of our body and this weight too is the 

product of acceleration. The structure that is the acceleration is transferred to the floor and so on. 

The acceleration of gravity weakens with the inverse square of distance. It would seem that the 

gravitational field of an object never ends. If the universe only contained two objects it would 
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seen that they would eventually come together regardless of how far apart they were originally. 

Thus there is no location in the universe where there is no gravity. All of space is warped to one 

degree or another and so all matter in space is accelerating to a plethora of different vectors and 

rates of acceleration. 

There is no action at a distance as the warping we call gravity is always there. It is often 

stated that if the sun were to disappear we would not know it for about eight minutes. This is 

incorrect. It assumes that gravity is a force and as such must propagate. Gravity is not a force it is 

a condition, it does not happen, it is. If we could make the sun disappear instantly the planets 

would instantly quit falling toward the sun and fly off into space on tangents to the points where 

they were when the sun disappeared. 

Einstein spoke of geodesics when he described this warping of space. Without going into 

the very complex mathematic of geodesics we can make a casual observation that all free motion 

in space, that is relative motion with no force involved, is rectilinear. An object is always moving 

on a straight line, it is the space that is curved. This is, for the most part, what Einstein said and it 

makes perfect sense. 

 

MOTION AS STRUCTURE 
 

 Returning to Newton’s Pendulum once again we will take up the mechanism of what is 

really happening in the function of the device. The common explanation is that the ‘energy’ 

travels from the ball doing the striking through the rest of the balls causing the end ball to fly out 

from the group. The only problem with the explanation is that it doesn’t say anything. What does 

it mean, the energy travels though the line of balls? 

 If we bring in the conservation of momentum it sounds better but it still doesn’t really say 

anything. Unless we can define momentum we have no viable explanation.  

 When we pull the initial ball back we are apply a force. That is the only force that is 

applied. Once the ball is released there is no more force involved. When they are hanging 

motionless all the balls are accelerating downward. That is what keeps the lines holding them 

tight and slightly stretched. The rack holding the balls is also accelerating downward as is the 

table the device is resting on, etc.  

 The ball, when pulled back is still accelerating straight down. When we release the ball it 

falls straight down. The line restraining it causes a secondary motion not unlike the dual motions 

of the orbiter. Thus the moving ball falls into the first object ball. Almost always it will be said 

that it is the force of gravity that starts the action of Newton’s Pendulum but gravity is not a 

force. Beyond the force that initially pulls the fist ball back there is no force whatsoever in the 

action of the device. 

 If the ball were allowed to fall straight down there would be no change in the falling ball 

from when it was tethered but when the string is holding it a new motion is induced, that being a 

rectilinear motion at right angles to the motion of the fall. In order to work properly all the balls 

of the pendulum must be identical in shape size and mass. This suggests structure. 

 Consider two of the balls in space with nothing near enough to be a reference point. Let 

the two balls be approaching each other with their centers of gravity in line with each other just as 

when they are tethered to rack of the pendulum. When they collide they would appear to move 

away from each other at virtually the same speed at which they approached. Since there is 

available no fixed point we have no way of knowing which ball is moving. In fact such a 

distinction is a moot point. If we consider one ball at rest we could say that the moving ball stops 
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and the ball at rest begins to move at the same rate of speed and the first ball. The effect I the 

same if chose the other ball to be at rest. If we consider them to be moving at equal speeds they 

recoil as was previously mentioned.  

 The same is true with the balls of Newton’s Pendulum. Our assumption that the balls 

hanging are motionless is artificial. What must be happening is that the two balls exchange 

structures. The first ball struck exchanges structures the next ball in line and so one until the last 

two balls exchange structures. With no ball to exchange with the end continues the movement of 

the initial ball. At this stage we do not know just what those structures are but it gives something 

a bit more tangible to seek than the rather amorphous energy. 

 If the were only ball in the universe we could add force and accelerate it. When we 

remove the force the ball would be exactly as it was before we applied the force. If we say we 

have added energy to the ball where is it? There would be no way of knowing that a force had 

been applied and yet something had to change, that certain ‘otherness’ in matter. 

As to the structures themselves I think that the structure that is affected by force is already 

present in any object. Consider this high-speed photo from Part II. 

 

 
 

 This clearly shows structure and a rather complex structure at that. As mentioned before 

the structure was most likely already present to one degree or another in the drop of water. The 

best candidate for what created this inherent structure would be surface tension. Keeping a drop 

of water spherical should require force and force presupposes energy.  

 This presents an interesting question. Surface tension is the result of a restructuring of the 

electrons in the outer ring that have no other water molecules with which to share electrons. 

Surface tension then is electromagnetic force.  

 According to the definition of force that we use this force should require energy but atoms 

do not seem to ever ‘run out’ of energy. Much of the water on the planet was here before life 

itself appeared and surface tension was present from the beginning. To be sure the water is 

always changing position and, due to the nature of water different molecules are always at the 

surface but four and a half billion years is a long time. 

 Then there is the surface tension of solid. When water freezes the conditions that create 

surface do not change. Also density is a factor in the strength of surface tension. The surface 

tension of mercury is about nineteen times that of water. This surface tension is strong enough to 

cause mercury to form spherical drops. The steel spheres of Newton’s Pendulum must have a 

strong surface tension and while it is not strong enough to deform the sphere it would certainly be 

strong enough to form an internal structure.  

 It follows then that this is the structure that is affected when the spheres of the pendulum 

collide. This would explain why a resonance forms so easily in very large structures, such as the 
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moon. When a force is applied to an object it does not have to create the structure as the structure 

is already there.  

 This supports the argument that it is a structure formed in the initial tine that moves the 

second tine. The two tines have structures that are identical, the only difference is that they are 

mirror images of each other. When the first tine is struck the structure from the impact (often 

referred to as the impulse function) changes the existing structure of the tine. The structure of the 

tine is also fed to the object doing the striking. It is this change in structure in the first that is 

transmitted to the second tine. 

 Another common misconception about energy concerns a string under tension, or in fact, 

tension in general. Consider a grand piano. When a tuner tunes a string he applies force. This 

force stretches the string, which deforms it. The natural tendency of the string is to return to its 

original shape. Raleigh spoke of this as a restoring force. It is a force and so the string is 

constantly ‘releasing energy’. Some will argue this and insist that the string only releases energy 

when it is broken.  This is wrong. When broken the structure of the atoms of the string are 

allowed to return to their normal structure instantly. The combined pull of the strings in a tuned 

grand piano is more than 35 tons. This certainly means energy. It becomes clearer why the term 

‘releases energy’ is not a particularly good expression. If the iron frame of the piano were not 

strong enough this combined force would tear it to pieces. 

 Much of the energy that goes into the sound of a piano comes from this stored energy of 

the strings. When a key hits the string the energy that is being used to attempt to return to the 

initial structure of the string amplifies the structure that the hammer has transferred to the string. 

Just as with drums and bells the shape and mass of the hammers are consistent in every piano. If 

the piano is left untuned, the string will slowly regain its normal position and stop ‘releasing 

energy’. This takes a remarkably long time. This is a good example of natural amplification and a 

very effective way to store energy. Because we do think in terms of structure we have never used 

this very effective energy storage system in anything but springs and stretched strings. 

 When we apply a force to an object the objects accelerates. Something in the object has 

changed as it is now moving (again relative to a initial position). Relativity tells us the 

accelerating object gains mass and it clocks run slower. This is only from the point of view of the 

observer who does not accelerate. To the object that was accelerated everything looks quite the 

same.  

 It is often stated that these ‘relativistic’ effects are only significant when we approach the 

speed of light. We forget that these effects are not dependent on such great speed. If a person gets 

up and walks across the room his clock is running slower than the person who remains seated. 

When we jump into the air the earth itself in effect moves proportionately in the other direction. 

While these changes and motions are too small to measure and are quite logically disregarded 

they are still real. The second law of motion is true regardless of the size of the objects involved. 

If time dilation occurs at speeds near the speed of light it must occur at the speed of a person 

walking. 

 The enharmonic system and its mathematics shows us that music, sound and vibration are 

both discrete and digital. We can surmise virtually everything the physical universe is. If gravity 

is structure as I suggest it is then the entire universe is actually one huge structure.  

This gravitational structure affects everything that is within it or perhaps to state it better 

everything is part of this one huge structure. Motion then is a change in the structure of the 

moving object in relation to the structure in which the object resides. 
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 There are many things we cannot do with discrete mathematics, or at least not do 

efficiently, but there are many vital things that we can do. Contrary to what it looks like we do 

not live in an analog world; or universe for that matter. 
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